[br][table][br][tr][br][td]English[/td][br][td]Japanese[/td][br][td]Korean[/td][br][td]Chinese Simplified[/td][br][/tr][br][tr][br][td]Reciprocal Function[/td][br][td]逆関数[/td][br][td]역함수[/td][br][td]倒数函数[/td][br][/tr][br][tr][br][td]Simplify[/td][br][td]簡素化する[/td][br][td]단순화하다[/td][br][td]简化[/td][br][/tr][br][tr][br][td]Graph[/td][br][td]グラフ[/td][br][td]그래프[/td][br][td]图形[/td][br][/tr][br][tr][br][td]Characteristics[/td][br][td]特性[/td][br][td]특성[/td][br][td]特性[/td][br][/tr][br][tr][br][td]x-intercepts[/td][br][td]x軸との交点[/td][br][td]x-절편[/td][br][td]x轴截距[/td][br][/tr][br][tr][br][td]Vertical Asymptotes[/td][br][td]垂直漸近線[/td][br][td]수직 점근선[/td][br][td]垂直渐近线[/td][br][/tr][br][tr][br][td]Horizontal Asymptotes[/td][br][td]水平漸近線[/td][br][td]수평 점근선[/td][br][td]水平渐近线[/td][br][/tr][br][tr][br][td]Polynomial Functions[/td][br][td]多項式関数[/td][br][td]다항 함수[/td][br][td]多项式函数[/td][br][/tr][br][tr][br][td]Asymptotes[/td][br][td]漸近線[/td][br][td]점근선[/td][br][td]渐近线[/td][br][/tr][br][tr][br][td]Discontinuities[/td][br][td]不連続[/td][br][td]불연속[/td][br][td]不连续[/td][br][/tr][br][tr][br][td]Rational Functions[/td][br][td]有理関数[/td][br][td]유리 함수[/td][br][td]有理函数[/td][br][/tr][br][tr][br][td]Coordinates[/td][br][td]座標[/td][br][td]좌표[/td][br][td]坐标[/td][br][/tr][br][tr][br][td]Intercepts[/td][br][td]切片[/td][br][td]절편[/td][br][td]截距[/td][br][/tr][br][tr][br][td]Curve[/td][br][td]曲線[/td][br][td]곡선[/td][br][td]曲线[/td][br][/tr][br][/table][br]
[table][br][tr][br][td][b]Factual Questions[/b][/td][br][td][b]Conceptual Questions[/b][/td][br][td][b]Debatable Questions[/b][/td][br][/tr][br][tr][br][td]1. What is the definition of a reciprocal function?[/td][br][td]1. Explain why the graph of a reciprocal function has vertical asymptotes at the zeros of the original function.[/td][br][td]1. Is the study of reciprocal functions of linear functions as important as studying polynomial functions? Why or why not?[/td][br][/tr][br][tr][br][td]2. How do you graph the reciprocal function of [math]f(x)=x+1[/math]?[/td][br][td]2. Discuss the behavior of a reciprocal function as [math]x[/math] approaches the zeros of the original linear function.[/td][br][td]2. Can reciprocal functions of linear functions be effectively used to model real-world situations?[/td][br][/tr][br][tr][br][td]3. What are the characteristics of the graph of a reciprocal function of a linear function?[/td][br][td]3. How does the graph of a reciprocal function relate to the graph of its original linear function?[/td][br][td]3. Debate the difficulty of understanding the concepts of asymptotes and discontinuities in reciprocal functions.[/td][br][/tr][br][tr][br][td]4. Determine the x-intercepts of the reciprocal function for [math]f(x)=3-x.[/math][/td][br][td]4. Explain the conditions under which a reciprocal linear function will have horizontal asymptotes.[/td][br][td]4. Discuss the statement: "The graphical analysis of reciprocal functions is more complex than that of their original functions."[/td][br][/tr][br][tr][br][td]5. Explain how to verify that two functions are inverses of each other.[/td][br][td]5. Compare and contrast the graphs of reciprocal functions derived from different linear functions.[/td][br][td]5. Evaluate the impact of learning reciprocal functions on students' overall mathematical development.[/td][br][/tr][br][/table][br]
Ahoy, intrepid explorers! Today, we set sail on the high seas of mathematics to navigate the mysterious curves of rational functions and hunt for the elusive asymptotes.[br][br]Record your findings in your captain's log (notebook) and share the tales of your adventure with your fellow mathematicians. May the winds of curiosity always fill your sails![br]
Task 1: Asymptote Archipelago**[br]- Chart a course for [math]y=\frac{ax+b}{cx+d}[/math] and discover the coordinates of the Vertical and Horizontal Asymptotes. Use the sliders to change a, b, c, and d and record your findings.[br]- Can you predict the location of the asymptotes before they appear? Test your hypothesis using the applet.
Task 2: Captain's Challenge[br]- As captain, create the most complex function you can, with both asymptotes and intercepts. Can your crew (classmates) determine the function's equation just by looking at the graph?[br]- Try to write the function's equation in a different form. Does it still lead to the same graph? Use the applet to check.
Bonus Task: Legend of the Inverted Sea[br]- Legends speak of a strange phenomenon where the sea turns upside down. Can you create a function that flips over its horizontal asymptote?[br]- Discuss with your crew what mathematical transformations lead to this 'inverted sea'. How do the asymptotes and intercepts help guide you to this phenomenon?
Q1-9 Basic practice [br]Q10-17 Section A style short answer[br]Q18-19 Long answer[br]Q20 Extension Towards HL
Watch the following video to see how the asymptotes can be calculated, after you have made your conjectures.
Question 1:[br]Consider the rational function[math]f(x)=(2x+3)/(x-4)[/math]. What is the domain of [math]f(x)[/math]?[br][br][br]
Question 2:[br]What is the horizontal asymptote of the function g(x) = (5x - 1)/(3x + 2)?[br][br][br][br]
Question 3:[br]For the function h(x) = (3x + 4)/(2x - 5), what is the vertical asymptote?[br][br][br]
Question 4:[br]The function [math]p(x)=(4x-7)/(x+3)[/math] has a y-intercept at:[br][br][br]
Question 5:[br]Which of the following represents a rational function with a hole at [math]x=-2[/math]?[br]