[b]Find [/b]the distance between the coordinates.[br][math]A(5,7)[/math] and [math]B(11,7)[/math].
[b]Prove [/b]that the points[math]A(0,0)[/math], [math]B(6,0)[/math] and [math]C(3,4)[/math]form an iscosceles triangle.
Point A has coordinates (1,2) and point B has coordinates (5,8). [i]M[/i] is the midpoint of AB. [b]Find [/b]the coordinates of M[i].[/i]
[b]Find [/b]the [b]coordinates[/b] where the line 2y-3x-7=0 intersects the y-axis.
[b]Find[/b] the [b]equation of the line[/b] that passes the points [math]A(1,2)[/math]and [math]B(5,8)[/math].
[b]Find[/b] the equation of the line [b]perpendicular[/b] to a line that passes through the points [math]A(2,2)[/math] and [math]B(5,-2)[/math].
The line [i][math]y=px+q[/math][/i] is [b]parallel[/b] to the line [math]y=2x-6[/math]and passes through the point [math](-1,7)[/math]. [b]Find [/b][i][math]p[/math][/i] and [i][math]q[/math][/i].
[b]Find [/b]the slope of the line perpendicular to [math]2y-3x-7=0[/math].
a) Plot the points given below on the coordinate plane.
[b]Justify [/b]that a linear relationship exists between [math]n[/math] and [math]C[/math].
[b]Find [/b]the linear relationship in standard form.
[b]Interpret [/b]what the gradient means in terms of [math]n[/math] and [math]C[/math].
Interpret what the [math]y[/math]-intercept means in terms of [math]n[/math] and [math]C[/math].