P, the 2nd Grinberg midpoints perspector is constructed as follows:[br][list][*]Define A[sub]B[/sub] as the intersection of the line through A perpendicular to CA and the line BC, [br]and define points A[sub]C[/sub], B[sub]C[/sub], B[sub]A[/sub], C[sub]A[/sub], C[sub]B[/sub] functionally. [/*][*]Define following points:[br]X[sub]A[/sub] = midpoint(A[sub]B[/sub], A[sub]C)[/sub],[br]Y[sub]A[/sub] = midpoint(B[sub]A[/sub], C[sub]A)[/sub],[br]Z[sub]A[/sub] = midpoint(B[sub]C[/sub], C[sub]B)[/sub],[br]and define X[sub]B[/sub], X[sub]C[/sub], Y[sub]B[/sub], Y[sub]C[/sub], Z[sub]B[/sub], Z[sub]C[/sub] functionally.[br][/*][*]The lines Z[sub]A[/sub]X[sub]A[/sub], Z[sub]B[/sub]X[sub]B[/sub], Z[sub]C[/sub]X[sub]C[/sub] concur in X(1661).[br][/*][/list]The barycentric coordinates of triangle center X(1661) are:[br]P : a²(b/v + c/w - a/u), where[br] (u,v,w) = (cos A - cos B cos C, cos B - cos C cos A, cos C - cos A cos B) ::
2de Grinberg middens perspectiefcentrum[br][list][/list][br]P, het 2de Grinberg middens perspectiefcentrum, construeer je als volgt:[br][list][*]Definieer A[sub]B[/sub] als het snijpunt van de rechte door A loodrecht op CA met de rechte BC, [br]en definieer analoog de punten A[sub]C[/sub], B[sub]C[/sub], B[sub]A[/sub], C[sub]A[/sub], C[sub]B[/sub]. [/*][*]Definieer volgende punten:[br]X[sub]A[/sub] = midden(A[sub]B[/sub], A[sub]C)[/sub],[br]Y[sub]A[/sub] = midden(B[sub]A[/sub], C[sub]A)[/sub],[br]Z[sub]A[/sub] = miden(B[sub]C[/sub], C[sub]B)[/sub],[br]en definieer analoog X[sub]B[/sub], X[sub]C[/sub], Y[sub]B[/sub], Y[sub]C[/sub], Z[sub]B[/sub], Z[sub]C[/sub] .[br][/*][*]De rechten Z[sub]A[/sub]X[sub]A[/sub], Z[sub]B[/sub]X[sub]B[/sub], Z[sub]C[/sub]X[sub]C[/sub] snijden elkaar in X(1661).[br][/*][/list]De barycentrische coördinaten van driehoekscentrum X(1661) zijn:[br]P : P : a²(b/v + c/w - a/u), met[br] (u,v,w) = (cos A - cos B cos C, cos B - cos C cos A, cos C - cos A cos B) ::