This activity is also part of one or more other Books. Modifications will be visible in all these Books. Do you want to modify the original activity or create your own copy for this Book instead?
This activity was created by '{$1}'. Do you want to modify the original activity or create your own copy instead?
This activity was created by '{$1}' and you lack the permission to edit it. Do you want to create your own copy instead and add it to the book?
Chama-se função quadrática, ou função polinomial do 2º grau, qualquer função f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c são números reais e a 0.
Ao construir o gráfico de uma função quadrática y = ax2 + bx + c, notaremos sempre que:
se a > 0, a parábola tem a concavidade voltada para cima;
se a < 0, a parábola tem a concavidade voltada para baixo
A nome Fórmula de Bhaskara foi dada em homenagem ao matemático Bhaskara Akaria, considerado o mais importante matemático indiano do século XII.
A fórmula de Bhaskara é principalmente usada para resolver equações quadráticas de fórmula geral ax2+bx+c=0
Agora que já vimos como calcular o Yv, podemos calcular a imagem de qualquer função do segundo grau.
Imagem, como vocês se lembram, é o conjunto de todos os valores do eixo Y em que a função existe.
O vértice de todas as parábolas tem uma característica própria, ele sempre se encontra "equidistante" de ambas as raízes, ou seja, a coordenada "x" do vértice fica exatamente no meio das coordenadas das duas raízes. Trocando em miúdos, a coordenada "x" do vértice é a média aritmética das coordenadas "x" das raízes, isto é, a soma das duas dividido por dois. Vamos chamá-lo de Xv ("x" do vértice):
Esta é a fórmula para encontrarmos o Xv. Se você não conseguir se lembrar na hora, faça a dedução como está aí em cima.
Adotando a origem O do sistema de eixos coordenados no ponto de lançamento, pode-se demonstrar que a altura atingida, num determinado instante, por esse projétil (ordenada y) e a distância alcançada, nesse mesmo instante, na horizontal (abscissa x) relacionam-se de acordo com a função definida pela sentença y = A.x2 + B.x, na qual A é uma constante que depende do ângulo de tiro, da velocidade vo de lançamento e da aceleração local da gravidade, e B é um valor constante que depende do ângulo do tiro. Tal função descrita acima é uma função polinomial do 2º grau ou também conhecida como função quadrática. Esta função tem aplicação em diversos cálculos.