In this demonstration, you may drag the point P around the unit circle.
Write an expression for [math]\left|OR\right|[/math] in terms of the [math]\angle POR[/math], and an expression for [math]\left|OP\right|[/math] in terms of the angle [math]\angle QOP[/math]. Notice that[math]\left|QP\right|=\left|OR\right|[/math] since [math]QPOR[/math]is a rectangle. What conclusions can you draw? [br][br]Express the lengths of segments [math]\left|PR\right|[/math] and [math]\left|OQ\right|[/math] in terms of angle [math]\angle POR[/math] and [math]\angle QOP[/math] respectively. What do you notice?
Express the [math]\left|PR\right|[/math] and [math]\left|OQ\right|[/math] in terms of angle [math]\angle POR[/math] and [math]\angle QOP[/math] respectively. What do you notice?
Use the figure in the applet to derive the identity [math]cos^2\left(\angle POR\right)+sin^2\left(\angle POR\right)=1[/math].