[b]Eine Funktion ist eine eine Beziehung zwischen zwei Mengen, die [br]jedem Element der einen Menge (Funktionsargument, unabhängige Variable, [br]x-Wert) genau ein Element der anderen Menge (Funktionswert, abhängige [br]Variable, y-Wert) zuordnet. Kurz: Jeder x-Wert aus der Definitionsmenge einer Funktion hat einen zugehörigen y-Wert[/b].[br][br][b]Mit der Definitionsmenge beantwortest du die Frage: Welche x-Werte darf ich in die Funktion einsetzen? [/b][br][b][br]Die Wertemenge ist die Menge aller möglichen Zahlen, die für y bzw. f(x) herauskommen können, wenn du jede Zahl der Definitionsmenge für x in die Funktion einsetzt.[/b][br][br]Hat [b]ein[/b] x-Wert [b]zwei[/b] y-Werte, handelt es sich [b]nicht[/b] um eine Funktion. Wichtig ist also, dass jedes Element im Definitionsbereich (x-Achse) nur [b]ein[/b] zugehöriges Element im Wertebereich (y-Achse) haben darf. Das Ergebnis von Funktionen muss also immer [b]eindeutig[/b] sein.
Du kannst aus einer alten Funktion f(x) eine [b]neue Funktion g(x)[/b] machen! Dazu veränderst du einfach die alte Funktion: Du kannst sie zum Beispiel verschieben, stauchen, strecken oder spiegeln. Das nennst du auch manipulieren.[br][br]Dabei ändern sich auch die Definitionsmenge D (Werte, die du für x einsetzen darfst) und die Wertemenge W (Werte, die du für y einsetzen darfst). Den neuen Definitions- und Wertebereich nennst du dann [b]D[sub]g[/sub][/b] und [b]W[sub]g[/sub][/b]. Du sagst dann:[i][br][img][/img][/i]
Erkunde mit dem CAS in Gruppenarbeit, wie man die Standardsinusfunktion sin(x) mit einem hinzugefügten Parameter verändern kann. Gehe auch auf den Wertebereich ein. Schreibe so mit, dass du Person das Ergebnis aus der Gruppenarbeit vorstellen kannst.[br][br]Gruppe A: Streckung des Graphens in y-Richtung[br]Gruppe B: Verschiebung an der x-Achse[br]Gruppe C: Verschiebung an der y-Achse
[b]Einfluss von gewissen Parametern auf die Sinusfunktion [br]f(x) = sin(x)[br][br]A) Strecken in y-Richtung mit dem Faktor a: g(x)=a*f(x)=a*sin(x)[br][br]Alle Funktionswerte werden mit a multipliziert. Dadurch wird der Graph von f mit dem Faktor |a| gestreckt. Ist a<0, so wird zusätzlich noch an der x-Achse gespiegelt. Die Amplitude (maximaler Funktionswert der periodischen Funktion) verändert sich und hat den Wert |a|.[br][br][br]B) Verschieben um c parallel zur x-Achse: [br]g(x)=f(x-c)=sin(x-c)[br][br]Positive Werte von c verschieben den Graphen nach rechts, negative Werte von c verschieben ihn nach links. [br][br][br][br]C) Verschieben um d parallel zur y-Achse:[br]g(x)=f(x)+d=sin(x)+d[br][br]Positive Werte von d verschieben den Graphen nach oben, negative Werte von d verschieben ihn nach unten.[br][/b]