Given vectors [math]\vec{u} = \langle –4, 6 \rangle[/math] and [math]\vec{v} = \langle 8, –1 \rangle[/math], find the vector sum [math]\vec{u} + \vec{v}[/math] in three ways: [math]\,\,\,\,\,[/math]a. [math]\,\,[/math]by placing them head-to-tail [math]\,\,\,\,\,[/math]b. [math]\,\,[/math]by using the Parallelogram Rule [math]\,\,\,\,\,[/math]c. [math]\,\,[/math]by using component-wise addition
[list=1] [*]Find the vector sum [math]\vec{u} + \vec{v}[/math] by placing [math]\vec{u}[/math] and [math]\vec{v}[/math] head-to-tail. [*]Find the vector sum [math]\vec{u} + \vec{v}[/math] using the Parallelogram Rule. [*]Find the vector sum [math]\vec{u} + \vec{v}[/math] using component-wise addition. [/list] This applet is provided by Walch Education as supplemental material for the [i]UCSS Secondary Math I[/i] program. Visit [url="http://www.walch.com"]www.walch.com[/url] for more information on our resources.