Copy of Converse of IST (V1)

[color=#000000]Interact with the applet below for a few minutes. [br]Then, answer the questions that follow. [br][i][br]Be sure to change the locations of the white points and gray point each time[br]before you re-slide the slider![/i][/color]
[color=#000000][b]Questions:[/b][br][br]1) Notice how the the triangle was constructed by constructing the [/color][color=#38761d][b]green angles[/b][/color][color=#000000] first. [br] [/color][color=#38761d][b]What is true about the green angles? [/b][/color][color=#000000][br][br][/color][color=#000000]2) [/color][color=#980000][b]What else did you notice about this triangle? Explain.[/b][/color][color=#000000] [br][br][/color][color=#000000]3) Fill in the blanks in the statement below to construct a true statement: [br][br][/color][color=#000000] If [/color][color=#38761d][b]two __________________ of a triangle are _______________,[/b][/color][color=#000000] then [/color][color=#980000][b]the ______________[/b][/color][color=#000000] opposite [/color][color=#38761d][b]those[br][br] __________________ [/b][/color][color=#980000][b]are also _________________. [/b][/color][color=#000000][br][br][/color][color=#000000]4) Construct a formal 2-column (or paragraph) proof of the statement in (3). [br][/color][i]You may need to draw an auxiliary segment (or ray) within your diagram! [/i]

Information: Copy of Converse of IST (V1)