La circunferencia goniométrica, trigonométrica, unitaria o «círculo unidad» es una circunferencia de radio uno, normalmente con su centro en el origen (0, 0) de un sistema de coordenadas cartesianas.[br]Para interpretar y extender las definiciones de las razones trigonométricas a cualquier ángulo, y no únicamente a los ángulos agudos, se representan las razones trigonométricas en la circunferencia goniométrica. [br]Cualquier punto P(x, y) de la circunferencia unidad nos define el ángulo formado por la semirrecta OX y la semirrecta positiva del eje X, recorriendo el ángulo en el sentido inverso a las agujas del reloj.[br]Si nos fijamos en el primer cuadrante, entonces x e y son las longitudes de los catetos de un triángulo rectángulo cuya hipotenusa tiene longitud 1, con lo que obtenemos que [b]x es el coseno del ángulo [math]\alpha[/math][/b] e [b]y es el seno [math]\alpha[/math][/b]. Este resultado nos permite extender la definición del seno y coseno a cualquier ángulo. Para ello, definimos como [b]seno de cualquier ángulo a la ordenada del punto (y) y coseno la abcisa del punto (x) en la circunferencia goniométrica[/b].[br]Resumiendo, cualquier punto de la circunferencia trigonométrica tiene como coordenadas [math](cos \alpha, sen \alpha)[/math].[br]A continuación tienes un aplicación que te permite ver con mayor claridad las razones trigonométricas de todo tipo de ańgulos. Seguimos por el tercer cuadrante, que trabajo con los ángulos comprendidos entre 180 º y 270º.