Function Transformation Lesson

Discover the Stretch, Compression ,Horizontal and Vertical shifts
You may try to Change the numbers which cause different effects of the functions
First Enter your main Function and then change the values to see the transformed function
Notes-1
Use the Applet above and check this:[br][br]We can stretch or compress f(x) in the y-direction by multiplying the whole function by a constant.[br][br][br][math]f\left(x\right)=x^2[/math] [math]g\left(x\right)=C.\left(x^2\right)[/math] [br] if C> 1 : it will stretch the f(x) in the y-direction [br]if 0 < C < 1: it will compress the function in the y-direction.[br][br]go up and try[br]
Notes-2
Use the Applet above and check this:[br][br]We can stretch or compress f(x) in the x-direction by multiplying 'x' by a constant.[br][br][br][math]f\left(x\right)=x^2[/math] [math]g\left(x\right)=\left(D.x\right)^2[/math] [br] [list][*]D > 1 compresses it[/*][*]0 < D < 1 stretches it[/*][/list]Note that (unlike for the y-direction), [b]bigger[/b] values cause more [b]compression[/b].[br]
Using Notes 1 & 2 answer the following questions
Q1. Compare g(x) with f(x)[br][math]f\left(x\right)=x^2[/math][br][math]g\left(x\right)=\frac{1}{4}x^2[/math]
Q2.
Compare g(x) with f(x)[br][math]f\left(x\right)=x^2[/math][br][math]g\left(x\right)=\left(\frac{x}{3}\right)^2[/math]
Q3.
Compare g(x) with f(x)[br][math]f\left(x\right)=x^2[/math][br][math]g\left(x\right)=2\left(\frac{x}{3}\right)^2[/math]
Notes-3
We can move it [b]up or down by adding a constant[/b] to the [color=#0000ff]y-value[/color][br]g(x) = x[sup]2[/sup] + K or [math]g\left(x\right)=f\left(x\right)+K[/math][br]Note: to move the line [b]down[/b], we use a [b]negative[/b] value for K.[br][list][*]K > 0 [color=#dd7e6b][b]moves it up[/b][/color][/*][*]K < 0 [color=#93c47d][b]moves it down[/b][/color][/*][/list]
Notes-4
We can move it [b]left or right by adding a constant[/b] to the [color=#0000ff]x-value[/color][br]g(x) = (x+h)[sup]2[/sup]  or [math]g\left(x\right)=f\left(x+h\right)[/math][br]Note: [b]Adding h[/b] moves the function to the [b]left[/b] (the negative direction).[br][list][*]h > 0 [color=#dd7e6b][b]moves it left[/b][/color][/*][*]h < 0 [color=#93c47d][b]moves it right[/b][/color][/*][/list][math]\left(x-3\right)^2[/math] will move 3 units to the right of the y-axis , beause x-3= 0 or x= 3 (positive menas right)[br][br][math]\left(x+4\right)^2[/math] will move 4 units to the left of y-axis because x+4= 0 means x= -4 ( so left)
Based on Notes 3 and 4 answer these Questions
Q4.[br]if [br][math]f\left(x\right)=x^2[/math] and [br][math]g\left(x\right)=\left(x+1\right)^2-3[/math][br][br]compare g(x) with f(x)
Q5.
if [br][math]f\left(x\right)=x^2[/math] and [br][math]g\left(x\right)=\left(x-2\right)^2+5[/math][br][br]compare g(x) with f(x)
Q6. Use all the facts you have learned
if [br][math]f\left(x\right)=x^2[/math] and [br][math]g\left(x\right)=2\left(x-3\right)^2+1[/math][br][br]compare g(x) with f(x)
Q7. What would be g(x) if
we transform f(x)= x[sup]2 [br][/sup]such that it [b][color=#dd7e6b]compresses by a factor of 3 in the x-direction[/color][/b] , shift the function by [b][color=#0000ff]2 on the left of y-axis[/color][/b] and [b][color=#6aa84f]move 4 units to Up[/color][/b]
Close

Information: Function Transformation Lesson