First Enter your main Function and then change the values to see the transformed function
Use the Applet above and check this:[br][br]We can stretch or compress f(x) in the y-direction by multiplying the whole function by a constant.[br][br][br][math]f\left(x\right)=x^2[/math] [math]g\left(x\right)=C.\left(x^2\right)[/math] [br] if C> 1 : it will stretch the f(x) in the y-direction [br]if 0 < C < 1: it will compress the function in the y-direction.[br][br]go up and try[br]
Use the Applet above and check this:[br][br]We can stretch or compress f(x) in the x-direction by multiplying 'x' by a constant.[br][br][br][math]f\left(x\right)=x^2[/math] [math]g\left(x\right)=\left(D.x\right)^2[/math] [br] [list][*]D > 1 compresses it[/*][*]0 < D < 1 stretches it[/*][/list]Note that (unlike for the y-direction), [b]bigger[/b] values cause more [b]compression[/b].[br]
Q1. Compare g(x) with f(x)[br][math]f\left(x\right)=x^2[/math][br][math]g\left(x\right)=\frac{1}{4}x^2[/math]
Compare g(x) with f(x)[br][math]f\left(x\right)=x^2[/math][br][math]g\left(x\right)=\left(\frac{x}{3}\right)^2[/math]
Compare g(x) with f(x)[br][math]f\left(x\right)=x^2[/math][br][math]g\left(x\right)=2\left(\frac{x}{3}\right)^2[/math]
We can move it [b]up or down by adding a constant[/b] to the [color=#0000ff]y-value[/color][br]g(x) = x[sup]2[/sup] + K or [math]g\left(x\right)=f\left(x\right)+K[/math][br]Note: to move the line [b]down[/b], we use a [b]negative[/b] value for K.[br][list][*]K > 0 [color=#dd7e6b][b]moves it up[/b][/color][/*][*]K < 0 [color=#93c47d][b]moves it down[/b][/color][/*][/list]
We can move it [b]left or right by adding a constant[/b] to the [color=#0000ff]x-value[/color][br]g(x) = (x+h)[sup]2[/sup] or [math]g\left(x\right)=f\left(x+h\right)[/math][br]Note: [b]Adding h[/b] moves the function to the [b]left[/b] (the negative direction).[br][list][*]h > 0 [color=#dd7e6b][b]moves it left[/b][/color][/*][*]h < 0 [color=#93c47d][b]moves it right[/b][/color][/*][/list][math]\left(x-3\right)^2[/math] will move 3 units to the right of the y-axis , beause x-3= 0 or x= 3 (positive menas right)[br][br][math]\left(x+4\right)^2[/math] will move 4 units to the left of y-axis because x+4= 0 means x= -4 ( so left)
Q4.[br]if [br][math]f\left(x\right)=x^2[/math] and [br][math]g\left(x\right)=\left(x+1\right)^2-3[/math][br][br]compare g(x) with f(x)
if [br][math]f\left(x\right)=x^2[/math] and [br][math]g\left(x\right)=\left(x-2\right)^2+5[/math][br][br]compare g(x) with f(x)
if [br][math]f\left(x\right)=x^2[/math] and [br][math]g\left(x\right)=2\left(x-3\right)^2+1[/math][br][br]compare g(x) with f(x)
we transform f(x)= x[sup]2 [br][/sup]such that it [b][color=#dd7e6b]compresses by a factor of 3 in the x-direction[/color][/b] , shift the function by [b][color=#0000ff]2 on the left of y-axis[/color][/b] and [b][color=#6aa84f]move 4 units to Up[/color][/b]