Centroid - Center of Mass (Gravity)

[size=150][b][i][color=#cc0000]Centroid[/color][/i][/b][/size][size=150][br]The point of a triangle where all three triangles or their "masses" meet at the same point, called centroid. [/size]
[size=150][color=#cc0000][b][i]Center of Mass[/i][/b][/color][br]The [b]center of mass[/b] is a position defined relative to an object or system of objects. For simple rigid objects with uniform density, the [b]center of mass[/b] is located at the [color=#cc0000][b][i]centroid[/i][/b][/color].[/size]
[size=150][color=#cc0000][i][b]How it Works?[br][/b][/i][/color][/size][size=150]Triangle ABC has been divided in three smaller triangles sharing the centroid as a vertex. [br]The areas of the triangles are given.[br][br]Drag the [b][color=#cc0000]V[/color][/b][color=#cc0000][b]ertices A, B, or C. [/b][/color][/size]
[size=150][b][color=#0000ff]Question 1[/color][/b][br][br]After you changed the size of the triangle, did the areas of all 3 triangles changed?[/size]
[size=150][b][color=#0000ff]Question 2[/color][/b][br][br]What can you conclude about the Centroid of the triangle? Why the [i][b]Centroid [/b][/i]could be also called [b][i]"Center of Mass" [/i][/b]or [i][b]"Center of Gravity"[/b][/i]? Explain.[/size]
[size=150][b][i][color=#cc0000]EXAMPLE [/color][/i][/b]- Find the Center of Mass of the Rock[/size]
Steps of Locating the Center of Mass (Gravity)
[size=150][color=#cc0000][i][b]Step 1:[/b][/i][/color] Draw a [b]Triangle[/b][icon]/images/ggb/toolbar/mode_tool.png[/icon][br][color=#cc0000][i][b]Step 2:[/b][/i][/color] Find the [b]Midpoints[/b][icon]/images/ggb/toolbar/mode_tool.png[/icon][br][color=#cc0000][i][b]Step 3:[/b][/i][/color] Find the [b]Center of Mass [/b][icon]/images/ggb/toolbar/mode_tool.png[/icon][br][/size][size=150][color=#cc0000][i][b]Step 4:[/b][/i][/color] [b]Circle[/b] the Center of Mass[/size][b][icon]/images/ggb/toolbar/mode_pen.png[/icon][/b]
Example
Task 1
[size=150][b][color=#cc0000][i]Find the "Center of Mass" of the Skateboarder[/i][/color][/b][/size]
Task 2
[i][b][size=150][color=#cc0000][left][i][b][size=150]Find the "Center of Mass" of the NASA Space Shuttle[/size][/b][/i][/left][/color][/size][/b][/i]
[color=#cc0000][i][b][size=150]Find the "Center of Mass" of the Inflatable Boat[/size][/b][/i][/color]
[i][b][size=150][color=#cc0000]Find the "Center of Mass" of the [/color][/size][/b][/i][color=#cc0000][b][i]Motorcycle[/i][/b][/color]
[size=150][b][i][color=#cc0000]EXIT TICKET[/color][/i][/b][br][br]After you have located the centroid or the [b]"Center of Mass"[/b], in your opinion, do you think these are the points where the object would be in [b]perfect balance[/b]? Explain.[/size][br]
Close

Information: Centroid - Center of Mass (Gravity)