Explore how entering 4, 9, 16, 25, 36, 49, 64 ... can lead to square patterns.[br][list=1][*]Enter the square numbers one at a time [/*][*]If the green and red factors are not balanced click on a factor you wish to convert[/*][*]Conversely fill in any near square number like 6,12,20, 30, 42, 56, 72 and 100 to determine that none of these can be made to form a square pattern.[/*][*]Try larger perfect squares from The On-Line Encyclopedia of Integer Sequences (OEIS) [br][url=https://oeis.org/A000290/list]https://oeis.org/A000290/list[/url][br][/*][/list]
[br]n a(n)[br]0 0[br]1 1[br]2 4[br]3 9[br]4 16[br]5 25[br]6 36[br]7 49[br]8 64[br]9 81[br]10 100[br]11 121[br]12 144[br]13 169[br]14 196[br]15 225[br]16 256[br]17 289[br]18 324[br]19 361[br]20 400[br]21 441[br]22 484[br]23 529[br]24 576[br]25 625[br]26 676[br]27 729[br]28 784[br]29 841[br]30 900[br]31 961[br]32 1024[br]33 1089[br]34 1156[br]35 1225[br]36 1296[br]37 1369[br]38 1444[br]39 1521[br]40 1600[br]41 1681[br]42 1764[br]43 1849[br]44 1936[br]45 2025[br]46 2116[br]47 2209[br]48 2304[br]49 2401[br]50 2500[br][br]