The Treehouse - Team E
Welcome students![br][br]Max and Sarah are planning to build a treehouse. They make a plan beforehand and thus ask themselves what material they need.[br][br]But they face some problems … even after careful consideration some of their problems remain unsolved.[br][br]They need YOUR HELP! [br]Come with us and join the team of treehouse engineers![br][br]
In little Slices - Team E
Diameter and Circumference
Sarah and Max have to tie ropes around the tree trunk and several branches. They know the thickness (= diameter) of the branches and trunk at the various points, but still have to find out how long the rope has to be.[br][br]Max borrows a tree slice from his grandfather. It is a decoration hanging over the fireplace in grandpa's living room.[br]It has a diameter of 26 cm and a circumference of 82 cm.
When looking at the slice, Max and Sarah reckon with your aid, it should be fairly easy to estimate diameter and circumference. [br][br]Take the following material out of the box:
MATERIAL: Six circular discs
Now estimate without measuring which disc (they are numbered) has a circumference of approx. 15 cm.
Again without measuring, estimate the circumference of disc No. 4.
With Good Prospects - Team E
Sarah hat im Keller einige würfelförmige Holzboxen (Kantenlänge 40 cm) gefunden und überlegt, ob man damit außen an der Wand des Baumhauses eine kleine Treppe bauen könnte. Dann könnte man aufs Dach und hätte da einen Ausguck!
Wie viele Würfel brauchen sie wohl für ihre Treppe? [br]Sarah hat die Boxen noch nicht gezählt, es sind aber auf jeden Fall mehr als 10, aber weniger als 20. [br]Ob die wohl reichen? Was meint ihr? Begründet eure Entscheidung Ja das reicht locker [b]in eurem Arbeitsheft[/b].
Schätzt: Wie viele Würfel benötigt man, um eine Treppe mit 5 Stufen zu bauen? Notiert eure Schätzung [b]auch in eurem Arbeitsheft[/b].
Für wie viele Stufen würden wohl 20 Würfel reichen? Notiert eure Schätzung [b]auch in eurem Arbeitsheft[/b].
Jetzt probiert ihr einfach aus, was stimmt! Sarah und Max machen mit...[br]Holt die Tüte mit den Holzwürfeln aus der Kiste.
MATERIAL: viele kleine Würfel
Baut aus den Würfeln nacheinander eine Würfeltreppe mit 3, 4 bzw. 5 Stufen. [br]Notiert [b]in der Tabelle "Würfel"im Arbeitsheft [/b]wie viele Würfel man insgesamt bei der jeweiligen Anzahl von Treppenstufen benötigt. Was fällt euch auf?
Überprüft dabei auch eure Schätzungen aus Aufgabe 19 und 20! [br]Waren eure Schätzungen gut?
Team I - Mit etwas Farbe
Max steuert für das Baumhaus noch etwas Farbe bei. Auch ein Kellerfund. Die tolle blaue Farbe hat sein Opa in einer alten Vase aufbewahrt. Durch die seltsame Form fällt es Max und Sarah nicht leicht abzuschätzen, wie viel (Milli-)Liter da wohl drin sind.
Alte Vase mit Farbe
Sie würden auch gerne besser abschätzen können ob die restliche Farbe noch reicht, wenn sie die Vorderseite (mit Tür) bereits gestrichen haben. Und nochmal wenn sie danach noch mit beiden Seitenwänden fertig sind.[br][br]Die Vorderseite hat in etwa die gleiche Fläche wie die Rückseite. Außerdem hat sie in etwa die gleiche Fläche wie beide Seitenwände zusammen. [br][br][br]Schätzt: [br]Wie hoch steht in der Vase die Farbe, wenn ein Drittel bzw. zwei Drittel davon aufgebraucht sind?[br]Zeichnet die beiden Füllhöhen [b]zuerst in euer Arbeitsheft [/b]und übertragt sie dannin die unten abgebildete Vase (nächste Aufgabe: "Füllhöhen einzeichnen").[br]Benutzt dazu das Stiftwerkzeug [icon]/images/ggb/toolbar/mode_pen.png[/icon] , das in dem Menü erscheint, wenn ihr auf den Pfeil [icon]/images/ggb/toolbar/mode_move.png[/icon] klickt.[br]
Füllhöhen einzeichnen
Gar nicht so einfach. Aber ihr habt euch ja auch angestrengt.[br]Jetzt können Max und Sarah immerhin abschätzen ob ihnen der Rest der Farbe noch reicht, wenn sie die Vorderseite gestrichen haben. Aber vorher zu wissen, ob die Farbe ausreicht wäre doch besser![br][br]Ihr könnt den beiden wieder direkt helfen. Nehmt folgende Materialien aus der Kiste:[br][list][*]Cocktailglas[/*][*]Wasserflasche[/*][*]Messbecher[/*][*]Messstreifen (=biegsames Lineal)[/*][*]Plastikschüssel[/*][/list]
MATERIAL: Cocktailglas mit Messstreifen, Wasserflasche, Messbecher, Plastikschüssel
Nehmt das Cocktailglas und stellt es in die Plastikschüssel. Füllt nun mit dem Messbecher genau 40 ml Wasser hinein. [br][br]Messt mit dem schmalen Lineal, das sich biegen lässt, wie hoch das Wasser im Glas steht. [br]Dazu taucht ihr das Lineal in das Glas (Achtet darauf, dass das Lineal gerade ist und sich nicht durchbiegt!).[br]Lest am Lineal ab, wie hoch das Wasser im Glas steht (Das ist die Füllhöhe). [br][br]Notiert das Ergebnis in der [b]Tabelle „Gefäße füllen“[/b] [b]in eurem Arbeitsheft[/b].[br][br]Gießt weitere 40 ml Wasser dazu. Wie hoch steht das Wasser jetzt? [br]Tragt eure Ergebnisse in die Tabelle ([u]gesamte[/u] Wassermenge – Füllhöhe) ein. [br][br]Macht so lange weiter, bis das Gefäß voll ist. Was fällt euch auf?
Mithilfe der Tabelle könnt ihr jetzt die folgenden Fragen beantworten:[br][i](findet ihr den genauen Wert nicht in der Tabelle, müsst ihr ihn auf Grundlage eurer Messungen schätzen.)[/i]
Wie viel Wasser befindet sich im Cocktailglas, wenn die Füllhöhe ca. 3cm beträgt?
Wie hoch würde ungefähr die Farbmenge, die für zwei Quadratmeter Fläche benötigt wird (=200 ml) in dem Glas stehen?
Wie viel Wasser passt insgesamt in das Cocktailglas?
Super! Das Cocktailglas hat ziemlich genau dieselbe Form wie die alte Vase - es passt allerdings doppelt so viel in die alte Vase.
Jetzt könnt ihr mit Sarah und Max grob berechnen, ob die Farbmenge ausreicht.[br]Die Seitenwände sind rechteckig und 1,50 m breit und 2 m hoch.[br]Notiert eure Rechnung.[br][size=85][i](bekannte [/i][i]Angaben: Pro Quadratmeter Fläche brauchen sie 100 ml Farbe. Vorderseite und Rückseite sind etwa gleich groß. Beide Seitenwände zusammen sind auch so groß wie die Vorder- bzw. Rückseite.)[/i][/size][br]
Geschafft! [br][br]Jetzt müsst ihr noch ein bisschen aufräumen, bevor es weiter gehen kann:[br]Schüttet das Wasser, das in der Plastikschüssel und in dem Glas ist, in das Waschbecken. [br]Reibt Glas und Schüssel mit einem Papierhandtuch trocken und räumt sie zusammen mit dem Messstreifen zurück in die Materialbox.[br][br]Danach könnt ihr weiter machen.[br][br][br]
Team I - Nägel mit Köpfen
Max‘ Papa hat schon Nägel im Baumarkt gekauft, jedoch steht auf dem Nagelpäckchen nicht die Anzahl an Nägeln. Auf dem Päckchen ist nur das Gesamtgewicht der enthaltenen Nägel angegeben. Max und Sarah wollen jedoch gerne wissen, ob sie für ihr Baumhaus genug Nägel haben oder ob sie nochmal welche dazukaufen müssen.[br][br]Nehmt aus der Materialbox das unbeschriftete Nagelpäckchen.
MATERIAL: unbeschriftetes Nägelpäckchen
Betrachtet es ganz genau! Schätzt jeder für sich ohne nachzuzählen, wie viele Nägel da drin sind. Tragt euer Ergebnis [b]auch in euer Arbeitsheft[/b] ein.
Ihr kennt ja Max und Sarah jetzt schon ein bisschen: sie wollen es wieder mal genauer wissen. [br]Echte Mathematiker eben!
MATERIAL: 5 abgezählte Nägelpäckchen
Nehmt nun die verschiedenen beschrifteten Nagelbündel aus der Box und "wiegt" sie nacheinander in der Hand. [br]Vergleicht die unterschiedliche Anzahl der Nägel in den Bündeln mit dem "gefühlten Gewicht" der Bündel. [br]Beschreibt eure Beobachtung.
Welche Größen hängen in diesem Experiment zusammen? Beschreibt [b]in eurem Arbeitsheft [/b]den Zusammenhang! [br][i](Beispiel: Denkt an den Kreis: [br] Durchmesser und Umfang hängen zusammen, [br] der Umfang ist ca. dreimal so groß wie der Durchmesser.)[/i]
Jetzt braucht ihr noch die Waage aus der Kiste.[br]Nehmt jedes Nagelbündel und wiegt es mit Hilfe der Waage.[br]ACHTUNG: Vor jedem Wiegen muss die Waage 0g anzeigen! -> Dazu die Taste TARA drücken.
MATERIAL: Waage
Nun tragt ihr neben die Anzahl der Nägel eines Bündels dessen Gewicht in Gramm direkt in die Tabelle in der [b]Simulation Nägel-Z [/b]ein. [br][br]Wiederholt dies für alle Bündel!
Nägel-Z
Schätzt nun mithilfe eurer gemessenen Werte.[br]Wie viel wiegen 60 Nägel etwa?
Wie viele Nägel wären etwa in einem Päckchen das 58 g wiegt?
Einen guten Überblick über den Zusammenhang zwischen der Anzahl der Nägel und dem Gewicht[br]erhält man auch in diesem Fall, wenn man einen Graphen dazu erstellt.[br]Setzt dazu ein Häkchen in der [b]Simulation Nägel-Z[/b] bei Messpunkte. [br][br]Eine Trendlinie zeigt euch wieder [b]in etwa [/b]den Verlauf der Messpunkte an.[br][size=85][i]Nicht vergessen: beim Messen gibt es Messungenauigkeiten! -[/i][size=100] welche vermutet ihr hier?[/size][/size]
Wie viele Messpunkte würden ausreichen, damit man diesen Graph zeichnen kann?[br]Wie viel Messungen hättet ihr nur machen müssen?
Warum genügt diese Anzahl an Messpunkten aber nicht, um den Füllgraphen des Cocktailglases zu zeichnen?
[br]Welche Aussage stimmt? Kreuzt eine Antwort an und begründet, warum ihr euch für diese[br]entschieden habt.
Begründung:
Zurück zu Sarah und Max. Mithilfe der Trendlinie könnt ihr jetzt hoffentlich auch die Frage beantworten, wie viele Nägel in dem unbekannten Päckchen sind.[br][br]Überprüft eure Schätzung aus Aufgabe 44 - Wer von euch lag am nächsten dran?
Im Keller finden Max und Sarah noch ein altes Päckchen mit den gleichen Nägeln. [br]Laut Verpackung wiegt es 340 g. Wie viele Nägel befinden sich darin? [br]Erklärt [b]in eurem Arbeitsheft [/b]wie ihr bei der Lösung vorgegangen seid.
Damit sind die beiden zum Thema Nägel auch auf der sicheren Seite - gut gemacht![br]Räumt noch schnell die Waage und die sechs Nägelpäckchen zurück in die Materialbox, [br]dann kann es weitergehen.
Team I - Gratulation!
WOW - das war ne Menge Arbeit und viel zu überlegen![br][br]Sarah und Max sind begeistert von euren Mathekünsten![br][br]Ihr habt euch als echte Baumhaus-Ingenieure herausgestellt!!![br][br]Herzlichen Glückwunsch!
Wenn das Baumhaus fertig ist, laden Sarah und Max euch auf jeden Fall zur Einweihungsparty ein.[br][br]Vielleicht seid ihr ja auf den Geschmack gekommen und wollt auch ein Baumhaus im Garten bauen.[br][br]Sarah und Max und das Team vom Mathe-Labor danken euch auf jeden Fall für eure Unterstützung!