IM Alg1.6.10 Lesson: Graphs of Functions in Standard and Factored Forms

[size=150]Here is a graph of the equation [math]y=8-2x[/math].[/size][br][br][img][/img][br][br]Where do you see the 8 from the equation in the graph?[br]
Where do you see the -2 from the equation in the graph?[br]
What is the [math]x[/math]-intercept of the graph? How does this relate to the equation?[br]
[size=150]In an earlier lesson, we saw that an equation such as [math]h\left(t\right)=10+78t-16t^2[/math] can model the height of an object thrown upward from a height of 10 feet with a vertical velocity of 78 feet per second.[/size][br][br][img][/img][br][br]Is the expression [math]10+78t-16t^2[/math] written in standard form? Explain how you know.[br]
Jada said that the equation [math]g\left(t\right)=\left(-16t-2\right)\left(t-5\right)[/math] also defines the same function, written in factored form. Show that Jada is correct.[br]
Here is a graph representing both [math]g\left(t\right)=\left(-16t-2\right)\left(t-5\right)[/math] and [math]h\left(t\right)=10+78t-16t^2[/math].[br][br][img][/img][br][br]Identify or approximate the vertical and horizontal intercepts.[br]
What do each of these points mean in this situation?[br]
Here are pairs of expressions in standard and factored forms.
[size=150]Each pair of expressions define the same quadratic function, which can be represented with the given graph.[/size][br][br][size=150]Identify the [math]x[/math]-intercepts and the [math]y[/math]-intercept of each graph.[/size][br][br][table][tr][td]Function [math]f[/math][br][br][br][math]x^2+4x+3[/math][br][br][br][math](x+3)(x+1)[/math][/td][td][img][/img][/td][/tr][/table][br][math]x[/math]-intercepts:
[math]y[/math]-intercept:
[table][tr][td]Function [math]g[/math][br][br][br][math]x^2-5x+4[/math][br][br][br][math](x-4)(x-1)[/math][/td][td][img][/img][/td][/tr][/table][br][math]x[/math]-intercepts:
[math]y[/math]-intercept:
[table][tr][td]Function [math]h[/math][br][br][br][math]x^2-9[/math][br][br][br][math](x-3)(x+3)[/math][/td][td][img][/img][/td][/tr][/table][br][math]x[/math]-intercepts:
[math]y[/math]-intercept:
[table][tr][td]Function [math]i[/math][br][br][br][math]x^2-5x[/math][br][br][br][math]x(x-5)[/math][/td][td][img][/img][/td][/tr][/table][br][math]x[/math]-intercepts:
[math]y[/math]-intercept:
[table][tr][td]Function [math]j[/math][br][br][br][math]5x-x^2[/math][br][br][br][math]x(5-x)[/math][/td][td][img][/img][/td][/tr][/table][br][math]x[/math]-intercepts:
[math]y[/math]-intercept:
[table][tr][td]Function [math]k[/math][br][br][br][math]x^2+4x+4[/math][br][br][br][math](x+2)(x+2)[/math][/td][td][img][/img][/td][/tr][/table][br][math]x[/math]-intercepts:
[math]y[/math]-intercept:
What do you notice about the [math]x[/math]-intercepts, the [math]y[/math]-intercept, and the numbers in the expressions defining each function? Make a couple of observations.
Here is an expression that models function [math]p[/math], another quadratic function: [math]\left(x-9\right)\left(x-1\right)[/math]. Predict the [math]x[/math]-intercepts and the [math]y[/math]-intercept of the graph that represent this function.
[size=150]Find the values of [math]a[/math], [math]p[/math], and [math]q[/math] that will make [math]y=a\left(x-p\right)\left(x-q\right)[/math] be the equation represented by the graph.[/size][br][br][img][/img]

IM Alg1.6.10 Practice: Graphs of Functions in Standard and Factored Forms

[size=150]A quadratic function [math]f[/math] is defined by [math]f\left(x\right)=\left(x-7\right)\left(x+3\right)[/math].[/size][br][br]Without graphing, identify the [math]x[/math]-intercepts of the graph of [math]f[/math]. Explain how you know.[br]
Expand [math]\left(x-7\right)\left(x+3\right)[/math] and use the expanded form to identify the [math]y[/math]-intercept of the graph of [math]f[/math].[br]
What are the [math]x[/math]-intercepts of the graph of the function defined by [math]\left(x-2\right)\left(2x+1\right)[/math]?
Here is a graph that represents a quadratic function.
[img][/img][br][br]Which expression could define this function?
[size=150]What is the [math]y[/math]-intercept of the graph of the equation [math]y=x^2-5x+4[/math]?[/size][br]
An equivalent way to write this equation is [math]y=\left(x-4\right)\left(x-1\right)[/math]. What are the [math]x[/math]-intercepts of this equation’s graph?[br]
[size=150]Noah said that if we graph [math]y=\left(x-1\right)\left(x+6\right)[/math], the [math]x[/math]-intercepts will be at [math]\left(1,0\right)[/math] and [math]\left(-6,0\right)[/math].[br][br][/size]Explain how you can determine, without graphing, whether Noah is correct.
[size=150]A company sells a video game. If the price of the game in dollars is [math]p[/math] the company estimates that it will sell [math]20,000-500p[/math] games.[br][/size][br]Which expression represents the revenue in dollars from selling games if the game is priced at [math]p[/math] dollars?
Write each quadratic expression in standard form.
An applet is provided below for you to draw a diagram if needed. [br][br][math]\left(x-3\right)\left(x-6\right)[/math]
[math]\left(x-4\right)^2[/math]
[math]\left(2x+3\right)\left(x-4\right)[/math]
[math]\left(4x-1\right)\left(3x-7\right)[/math]
[size=150]Consider the expression [math]\left(5+x\right)\left(6-x\right)[/math].[/size][br][br]Is the expression equivalent to [math]x^2+x+30[/math]? Explain how you know.[br]
Is the expression [math]30+x-x^2[/math] in standard form? Explain how you know.[br]
[size=150]Here are graphs of the functions [math]f[/math] and [math]g[/math] given by [math]f\left(x\right)=100\cdot\left(\frac{3}{5}\right)^x[/math] and [math]g\left(x\right)=100\cdot\left(\frac{2}{5}\right)^x[/math].[br][br][img][/img][br][/size][br]Which graph corresponds to [math]f[/math] and which graph corresponds to [math]g[/math]? Explain how you know.
[size=150]Here are graphs of two functions [math]f[/math] and [math]g[/math].[/size][br][img][/img][br]An equation defining [math]f[/math] is [math]f\left(x\right)=100\cdot2^x[/math].[br][br]Which of these could be an equation defining the function [math]g[/math]?

Information