Cavalier-Cabinet-Central-Projection xy-z(Φ=45°,α=63.43°)

classic oblique projections
In classic oblique projections two coordinate axes are not changed by the mapping and a shearing is applied to the third.[br]The projection direction of the third axis is given by two angles α and Φ [br]The angle Φ is preserved in the projection and corresponds to the angle between the projected y- and x-axis. The angle α controls the ratio:[br][br] Cavalier projection x:y=1:1, α = Φ = 45°[br] Cabinet projection: x:y=2:1, α = 63.435° and Φ=45° [br][br]In classic mathematical theorem the y axis is vertical alined. here we use the school based coordinate system by z axis vertical (the projection was made for plane y=0, but plotted to plane z=0)![br][table][tr][td][img][/img][/td][td]used projection matrix[br][br][math]\left(\begin{array}{rrr}1&\frac{\operatorname{cos} \left( \Phi \right)}{\operatorname{tan} \left( \alpha \right)}&0\\0&\frac{\operatorname{sin} \left( \Phi \right)}{\operatorname{tan} \left( \alpha \right)}&1\\\end{array}\right)[/math][br][br][br]Standard projection matrix[br][br][math]\left(\begin{array}{rrr}1&0&\frac{\operatorname{cos} \left( \Phi \right)}{\operatorname{tan} \left( \alpha \right)}\\0&1&\frac{\operatorname{sin} \left( \Phi \right)}{\operatorname{tan} \left( \alpha \right)}\\\end{array}\right)[/math][/td][/tr][/table][br] [br][url=https://www.mathematik.uni-marburg.de/~thormae/lectures/graphics1/graphics_6_2_eng_web.html#1]Graphics Programming ( [/url][url=https://www.mathematik.uni-marburg.de/~thormae/lectures/graphics1/graphics_6_2_eng_web.html#1]Torsten Thormählen[/url])[math]\nearrow[/math][br][url=https://www.inf.tu-dresden.de/content/institutes/smt/cg/teaching/lectures/CG2WS0203/secure/mathematik_script.pdf][br]Affine und projektive Räume (Oliver Deussen)[/url][math]\nearrow[/math][br][br] Grid models defined by [color=#ff0000]Edges-varaibles[/color][br][br]Fig[color=#0000ff]n[/color]A - Pointlist 3D Figur[br][color=#ff0000]FignEdges [/color]- Polyline 3D Figur [br]Fig[color=#0000ff]n[/color]Edges_V - Polygon 3D Figur[br]Fig[color=#0000ff]n[/color]A_P - Pointlist 2D Projection Figur[br][color=#ff0000]FignEdges_P[/color] - Polyline 2D Projection Figur [br][color=#ff0000]FignEdges_Z[/color] - Polyline 2D Central Projection Figur [br][br]Making Figur 2 Pyramid (Tetrahedron) higher a/3->a/2[br][img][/img][br]
Oblique and Central Projection
Example Fig2A - Fig4A
switch visibility of figures by Algebra View [ o ] [br]Fig2 und Fig4 rotation by angle φ about zAxis
Fig3 Cabinet Projection
addition visible cube Fig1Edges und Fig1Edges_P
Fig4 central projection
Visible Fig4A, Fig4Edges; Fig4Edges_Z [br]and CAM - select CAM and move CAM with key board 0.5 steps φ=45° Zoom[br]CAM effects only by central projection
Fig5 Central Projection
CAM Position (7.5,-13.5,3.5 ) φ=0° Zoom
Projektion App
Construction of a matrix in homogeneous coordinates for a central projection

Information: Cavalier-Cabinet-Central-Projection xy-z(Φ=45°,α=63.43°)