IM Geo.3.15 Practice: Finding All the Unknown Values in Triangles

In the right triangles shown, the measure of angle ABC is the same as the measure of angle EBD.
What is the length of side [math]BE[/math]?[br]
[size=150]In right triangle [math]ABC[/math], angle [math]C[/math] is a right angle,[math]AB=13,[/math] and [math]BC=5[/math]. [/size][br]What is the length of [math]AC[/math]?
In this diagram, lines AC and DE are parallel, and line DC is perpendicular to each of them.
[math]AC\parallel DE,DC\perp DE,DC\perp AC,[/math]segment [math]DE[/math] has length 1[br][img][/img][br]What is a reasonable estimate for the length of side [math]BE[/math]?
Select all of the right triangles.
Andre says he can find the length of the third side of triangle ABC and it is 13 units.
Mai disagrees and thinks that the side length is unknown. Who do you agree with? Show or explain your reasoning.
In right triangle ABC, altitude CD with length h is drawn to its hypotenuse.
We also know [math]AD=8[/math] and [math]DB=2[/math]. What is the value of [math]h[/math]?
[size=150]Select the sequence of transformations that [math]AC=6[/math] would show that triangles [math]ABC[/math] and [math]AED[/math] are similar. The length of [math]AC[/math] is 6.[/size][br][img][/img]
Close

Information: IM Geo.3.15 Practice: Finding All the Unknown Values in Triangles