Superposición de ondas sinusoidales

Excursión a la física
[size=100]Las ondas sonoras pueden representarse matemáticamente como una combinación de ondas sinusoidales. Cada tono musical se compone de varias ondas sinusoidales de la forma  [i]y(t) = a sine(ω t + φ)[/i].[br][br]La amplitud [i]a[/i] influye en el volumen del tono mientras que la frecuencia [i]ω[/i] determina el tono. El parámetro [i]φ[/i] es llamado "fase" e indica si la onda sonora está desfasada en el tiempo.[br][br]Si dos ondas sinusoidales interfieren, ocurre la superposición. Esto significa que las ondas sinusoidales se amplifican o disminuyen unas a otras. Es posible simular este fenómeno con GeoGebra a fin de examinar casos especiales que ocurren en la naturaleza.[/size]
Visualización de ondas sinusoidales superpuestas
Instructiones
[table][tr][td][size=100]1.[/size][/td][td][size=100][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_slider.png[/icon][/size][/td][td][size=100]Crea tres deslizadores [/size][i]a_1, ω_1[/i][size=100] y [/size][i]φ_1[/i][size=100] utilizando las configuraciones predeterminadas.[/size][br][/td][/tr][tr][td][br][/td][td][br][/td][td][size=100][u]Pistas[/u][size=100]: Ingresando [/size][i][code]_1 [/code][/i][size=100] se obtiene un sub-índice [/size][sub][size=50]1[/size][/sub][size=100]. [br]Para insertar una letra griega, coloca el cursor en el campo de texto [i]Nombre[/i] y haz clic en la letra [/size][math]\alpha[/math][size=100] que aparecerá en el extremo derecho de ese campo. Esta acción abre una lista de letras griegas de las cuales puedes seleccionar la deseada.[/size][br][/size][/td][/tr][tr][td][size=100]2.[/size][/td][td][icon]https://wiki.geogebra.org/uploads/thumb/4/40/Menu_view_algebra.svg/120px-Menu_view_algebra.svg.png[/icon][/td][td][size=100]Ingresa la función sinusoidal [font=Courier New]g(x)= a_1 sin(ω_1 x + [i]φ[/i]_1)[/font].[br][/size][/td][/tr][tr][td][size=100]3.[/size][/td][td][size=100][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_slider.png[/icon][/size][/td][td][size=100]Crea tres deslizadores [i]a_2, ω_2[/i] and [i]φ_2[/i], utilizando las configuraciones predeterminadas.[br][u]Pista[/u]: Los deslizadores pueden moverse en la [i]Vista gráfica [/i]cuando la herramienta [i]Deslizador[/i] se encuentra activada.[/size][/td][/tr][tr][td][size=100]4.[/size][/td][td][icon]https://wiki.geogebra.org/uploads/thumb/4/40/Menu_view_algebra.svg/120px-Menu_view_algebra.svg.png[/icon][/td][td][size=100]Ingresa otra función sinusoidal [font=Courier New]h(x)= a_2 sin(ω_2 x + φ_2)[/font].[/size][/td][/tr][tr][td][size=100]5.[/size][/td][td][icon]https://wiki.geogebra.org/uploads/thumb/4/40/Menu_view_algebra.svg/120px-Menu_view_algebra.svg.png[/icon][/td][td][size=100]Crea la suma de ambas funciones escribiendo [font=Courier New]suma(x) = g(x) + h(x)[/font].[/size][/td][/tr][tr][td][size=100]6.[/size][/td][td] [img]https://wiki.geogebra.org/uploads/thumb/d/db/Stylingbar_icon_graphics.svg/32px-Stylingbar_icon_graphics.svg.png[/img][/td][td][size=100]Utiliza la[i] Barra de estilo[/i] para cambiar el color de las tres funciones y sus correspondientes deslizadores para identificarlos con facilidad.[/size][/td][/tr][/table]
Inténtalo
Exploraciones
[size=100]Examina la influencia de los parámetros en la gráfica de las funciones sinusoidales. Establece [i]a[sub]1[/sub] = 1, ω[sub]1[/sub] = 1 [/i]y [i]φ[sub]1[/sub] = 0[/i] y responde las siguientes preguntas:[br][/size][size=100][br][/size]
¿Para qué valores de [i]a[sub]2,[/sub] ω[sub]2[/sub][/i] y [i]φ[sub]2[/sub][/i] la suma alcanza su máxima amplitud? [u][br]Nota[/u]: En este caso el tono resultante tiene el máximo volumen. 
¿Para qué valores de [i]a[sub]2[/sub], ω[sub]2[/sub][/i], y [i]φ[sub]2[/sub][/i] las funciones se cancelan entre sí? [u][br]Nota[/u]: En este caso el tono no puede ser escuchado.
Close

Information: Superposición de ondas sinusoidales