G.GCI.2 Inscribed Angle Theorem: Take 2!

The pink angle is said to be an inscribed angle within the circle below. This inscribed angle intercepts the thick blue arc of the circle. Because of this, this thick blue arc is said to be the inscribed angle's intercepted arc. Notice how the blue central angle also intercepts this same thick blue arc. To start: 1) Move point D wherever you'd like. 2) Adjust the size of the thick blue intercepted arc by moving the other 2 blue points (if you wish.) 3) Click the checkbox to lock point D. 4) Follow the interactive prompts that will appear in the applet. Interact with the following applet for a few minutes. Then, answer the questions that follow.
1.
How many pink inscribed angles fill a central angle that intercepts the same arc?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
2.
How does the measure of an central angle (of a circle) compare with the measure of the arc it intercepts?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
3.
Given your responses to (1) and (2) above, how would you describe the measure of an inscribed angle (of a circle) with respect to the measure of its intercepted arc?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Quick (Silent) Demo
Close

Information: G.GCI.2 Inscribed Angle Theorem: Take 2!