-
2016-2 Planteamiento y solución de Problemas (Psol) 2016-2
-
1. Semana 1
- Semana1 Sesión 1: ¿ -2 x -3 es igual a +6 ?
- Semana 1 Sesión 2: Promedio de dos viajes
- Paper folding - finding the square root of n
- Domain and Range of a Function
- Domain and range of real functions
-
2. Semana 2
- Suma de áreas poligonales (adaptado de Judah Schwartz)
- La escalera deslizante (Adaptado de Judah Schwartz)
-
3. Semana 3
This activity is also part of one or more other Books. Modifications will be visible in all these Books. Do you want to modify the original activity or create your own copy for this Book instead?
This activity was created by '{$1}'. Do you want to modify the original activity or create your own copy instead?
This activity was created by '{$1}' and you lack the permission to edit it. Do you want to create your own copy instead and add it to the book?
2016-2 Planteamiento y solución de Problemas (Psol) 2016-2
Alfonso Meléndez, Aug 4, 2016

En este espacio se encuentran las actividades interactivas que se usarán para el curso electivo PSOL, en formato semanal.
Table of Contents
- Semana 1
- Semana1 Sesión 1: ¿ -2 x -3 es igual a +6 ?
- Semana 1 Sesión 2: Promedio de dos viajes
- Paper folding - finding the square root of n
- Domain and Range of a Function
- Domain and range of real functions
- Semana 2
- Suma de áreas poligonales (adaptado de Judah Schwartz)
- La escalera deslizante (Adaptado de Judah Schwartz)
- Semana 3
Semana1 Sesión 1: ¿ -2 x -3 es igual a +6 ?
Semana 1 Sesión 1
¿Puedes usar este applet para encontrar un argumento que explique por qué
menos por menos es más? (Adaptado de Judah Schwartz )


Suma de áreas poligonales (adaptado de Judah Schwartz)
The GOLD dot is connected to all four vertices of a rectangle.
You can set the size & shape of the rectangles by dragging the GRAY dot.
You can place the GOLD dot anywhere in the rectangle.
The length of the segment from each vertex of the rectangle to the GOLD dot is the side of a regular polygon.
The sum of the areas of the BLUE polygons is equal to the sum of the areas of the GREEN polygons no matter where you place the GOLD dot.
Can you prove this? What happens when you drag the GOLD dot outside the rectangle? Why?


Saving…
All changes saved
Error
A timeout occurred. Trying to re-save …
Sorry, but the server is not responding. Please wait a few minutes and then try to save again.