
Subtracting Polynomials
You are enlarging a [b][i]5[/i][/b]-inch by [b][i]7[/i][/b]-inch photo by a scale factor of [i][b]x[/b][/i] and mounting it on a mat. You want the mat to be twice as wide as the enlarged photo and [b][i]2[/i][/b] inches less than twice as high as the enlarged photo.[br][br][u][b]a.[/b][/u] Draw a diagram to represent the described situation. Label the dimensions.[br][br][b][u]b.[/u][/b] Write a model for the area of the mat around the photograph as a function of the scale factor.

SOLUTION
Use a verbal model. Use the diagram to find expression for the labels.[br][br][b]Area of mat = Total Area - Area of photo[br][/b][br]Area of mat = [b][i]A[/i][/b] (square inches)[br][br]Total area = [math]\left(10x\right)\left(14x-2\right)[/math] (square inches)[br][br]Area of photo = [math]\left(5x\right)\left(7x\right)[/math] (square inches)[br][br]Algebraic Model[br][br][math]A=\left(10x\right)\left(14x-2\right)-\left(5x\right)\left(7x\right)[/math][br][br] [math]=140x^2-20x-35x^2[/math][br][br] [math]=105x^2-20x[/math][br][br]A model for the area of the mat around the photograph as a function of the scale factor [b][i]x[/i][/b] is[br][br][math]A=105x^2-20x[/math]
Modeling a Punnett Square
Science Connection
The Punnett square below is an area model that shows the possible results of crossing two pink snapdragons, each with one red gene [b][i]R[/i] [/b]and one white gene [i][b]W[/b][/i]. Each parent snapdragon passes along only one gene for color to its offspring. Show how the square of a binomial can be used to model the Punnett square.

Solution
Each parent snapdragon has half red and half white genes. You can model the genetic makeup of each parent as [math]0.5R+0.5W[/math]. The genetic makeup of the offspring can be modeled by the product [math]\left(0.5R+0.5W\right)^2[/math].[br][br][math]\left(0.5R+0.5W\right)^2=\left(0.5R\right)^2+2\left(0.5R\right)\left(0.5W\right)+\left(0.5W\right)^2[/math][br][br] [math]=0.25R^2+0.5RW+0.25W^2[/math][br][br] (Red) (Pink) (White)[br][br][br][color=#ff0000]25% of the offspring will be red, 50% will be pink, and 25% will be white.[/color]
Writing a Quadratic Model
Lanscape Design
You are putting a stone border along two sides of a rectangular Japanese garden that measures [b][i]6[/i][/b] yards by [b][i]15[/i][/b] yards. Your budget limits you to only enough stones to cover [b][i]46[/i][/b] square yards. How wide should the border be?

Solution
Begin by drawing and labeling a diagram.[br][br]Area of Border = Total Area - Garden Area[br][br][math]46=\left(x+15\right)\left(x+6\right)-\left(15\right)\left(6\right)[/math] [color=#1155cc]Write quadratic model.[/color][br][br][math]46=x^2+21x+90-90[/math] [color=#1155cc]Multiply[/color][br][br][math]0=x^2+21x-46[/math] [color=#1155cc]Write in standard form[/color][br][br][math]0=\left(x+23\right)\left(x-2\right)[/math] [color=#1155cc]Factor[/color][br][br][math]\left(x+23\right)=0[/math] or [math]\left(x-2\right)=0[/math] [color=#1155cc]Use zero-product property[/color][br][br][math]x+23=0[/math] [color=#1155cc]Set first factor equal to 0[/color][br][br][math]x=-23[/math] [color=#1155cc]Solve for x[/color][br][br][math]x-2=0[/math][color=#1155cc] Set second factor equal to 0[/color][br][br][math]x=2[/math][color=#1155cc] Solve for x[/color][br][br]The solutions are [math]-23[/math] and [math]2[/math]. Only [math]x=2[/math] is a reasonable solution, because negative values for dimensions do not make sense. Mark the border [color=#ff0000]2 yards[/color] wide.
Writing and Using a Quadratic Model
BLOCK AND TACKLE
An object lifted with a rope or wire should not weigh more than the [i]safe working load[/i] for the rope or wire. The safe working load [i]S[/i] (in pounds) for a natural fiber rope is a function of [i]C[/i], the circumference of the rope in inches.[br][br] [b]Safe working load model[/b]: [math]150\cdot C^2=S[/math][br][br]You are setting up a block and tackle to lift a 1350-pound safe. What size natural fiber rope do you need to have a safe working load?

SOLUTION
Use the model to find a safe rope size. Substitute 1350 for [i]S[/i].[br][br] [math]150C^2=S[/math] [color=#0000ff]Write model.[br][br][/color] [math]150C^2=1350[/math] [color=#0000ff]Substitute.[br][br][/color] [math]150C^2-1350=0[/math] [color=#0000ff]Subtract 1350 from each side.[br][/color][br] [math]150\left(C^2-9\right)=0[/math] [color=#0000ff]Factor out common factor.[br][/color][br] [math]150\left(C-3\right)\left(C+3\right)[/math] [color=#0000ff]Factor.[br][/color][br] [math]\left(C-3\right)=0[/math] or [math]\left(C+3\right)=0[/math] [color=#0000ff]Use zero-product property.[/color][br][br] [math]C-3=0[/math] [color=#0000ff]Set first factor equal to 0.olve for [i]C[/i].[br][br][/color] [math]C=3[/math] [color=#0000ff]Solve for [i]C[/i].[/color][br] [br] [math]C+3=0[/math] [color=#0000ff]Set second factor equal to 0.[br][/color][color=#0000ff][br][/color] [math]C=-3[/math] Solve for [i]C[/i].[br][color=#0000ff][br][/color]The negative solution makes no sense. You need a rope with a circumference of at least [b][i][color=#ff0000]3 inches.[br][/color][/i][/b]