[size=100][size=150]Here is an expression: [math]2x+3y[/math].[br][br]Decide if the values in each ordered pair, [math]\left(x,y\right)[/math], make the value of the expression less than, greater than, or equal to 12.[/size][/size][br][br][math]\left(0,5\right)[/math]
[math]\left(6,0\right)[/math]
[math]\left(-1,-1\right)[/math]
[math]\left(-5,10\right)[/math]
[list][*][size=150][math]x\ge y[/math][br][/size][/*][*][size=150][math]\text{-}2y\ge\text{-}a=4[/math][/size][/*][*][size=150][math]3x<0[/math][br][/size][/*][*][size=150][math]x+y>10[/math][/size][/*][/list][size=150][br]Study each inequality assigned to your group and work with your group to:[/size][br][list][*]Find some coordinate pairs that represent solutions to the inequality and some coordinate pairs that do not represent solutions.[/*][*]Plot both sets of points. Either use two different colors or two different symbols like X and O.[/*][*]Plot enough points until you start to see the region that contains solutions and the region that contains non-solutions. Look for a pattern describing the region where solutions are plotted.[/*][/list]
[size=150]Here is a graph that represents solutions to the equation [math]x-y=5[/math][/size][br][br][img][/img][br][size=150][br]Sketch 4 quick graphs representing the solutions to each of these inequalities using the applets below. Drag the red points to adjust the line, select a line style from the dropdown menu, and select on the blank areas on the graph to shade them in.[/size][br]
[img][/img]
[img][/img]
[img][/img]
[img][/img]
[size=150]The points [math]\left(7,3\right)[/math] and [math]\left(7,5\right)[/math] are both in the solution region of the inequality [math]x-2y<3[/math].[/size][br][img][/img][br][br]Compute [math]x-2y[/math] for both of these points.
Which point comes closest to satisfying the equation [math]x-2y=3[/math]?
That is, for which [math]\left(x,y\right)[/math] pair is [math]x-2y[/math] closest to 3?
[size=150]The points [math]\left(3,2\right)[/math] and [math]\left(5,2\right)[/math] are also in the solution region.[br][/size][br]Which of these points comes closest to satisfying the equation [math]x-2y=3[/math]?[br]
Find a point in the solution region that comes even closer to satisfying the equation [math]x-2y=3[/math]. [br]What is the value of [math]x-2y[/math]?[br]
For the points [math]\left(5,2\right)[/math] and [math]\left(7,3\right)[/math], [math]x-2y=1[/math]. Find another point in the solution region for which [math]x-2y=1[/math].[br]
Find [math]x-2y[/math] for the point [math]\left(5,3\right)[/math].Then find two other points that give the same answer.[br]