Visualization of a numerical method for determining the type of local extrema of functions with two variables on a contour map without using derivatives. 4.1

[b]f₄(x, y) = k[sub]f[/sub]*(3 (1 - x²) ℯ[sup]-(x - 0.5)² - (y + 1)²[/sup] - 2 (x / 5 - x³ - y⁵) ℯ[sup]-x² - y²[/sup] sin(x - y))[br][size=85][br]*Detailed instructions and explanations for this applet can be found in the previous applets [url=https://www.geogebra.org/m/yf62eg4c]1[/url], [url=https://www.geogebra.org/m/v6pwykyh]2[/url] and [url=https://www.geogebra.org/m/djtadvjc]3[/url].[/size][/b]
Visualization of a numerical method for determining the type of local extrema of functions with two variables on a contour map without using derivatives. Implicit curves of the equations: fx(x,y)=0 and fy(x,y)=0. Contour lines

Information: Visualization of a numerical method for determining the type of local extrema of functions with two variables on a contour map without using derivatives. 4.1