A: [math]y=\left(x+4\right)\left(x-6\right)[/math][br]B: [math]y=2x^2-8x-24[/math][br]C: [math]y=x^2+5x-25[/math][br]D: [math]y=x^3+3x^2-10x-24[/math]
[size=150]Earlier, we learned we can make a box from a piece of paper by cutting squares of side length [math]x[/math] from each corner and then folding up the sides. Let’s say we now have a piece of paper that is 8.5 inches by 14 inches. The volume [math]V[/math], in cubic inches, of the box is a function of the side length [math]x[/math] where [math]V\left(x\right)=\left(14-2x\right)\left(8.5-2x\right)\left(x\right)[/math].[br][/size][br]Identify the degree and leading term of the polynomial. Explain or show your reasoning.
Without graphing, what can you say about the horizontal and vertical intercepts of the graph of [math]V[/math]? [br]
Do these points make sense in this situation?
[math]\left(x+2\right)\left(x+4\right)[/math] and [math]x^2+6x+8[/math]
[math]\left(x+6\right)\left(x+-5\right)[/math] and [math]x^2+x-30[/math]
[math]\left(x^2+10x+7\right)\left(2x-1\right)[/math] and [math]2x^3+19x^2+4x-7[/math]
[math]\left(4x^3-8\right)\left(x^2+3\right)[/math] and [math]4x^5+12x^3-8x^2-24[/math]
Write a pair of expressions that each have 2 or 3 terms, and trade them with your partner. Multiply the expressions they gave you.[br]
[center][/center][size=150]Let [math]f\left(x\right)=\left(x-2\right)\left(x+3\right)\left(x-7\right)[/math] and[math]g\left(x\right)=\frac{1}{2}\left(x-2\right)\left(x+3\right)\left(x-7\right)[/math][/size][br][br]Use the applet below to explore both functions in the same window of [math]-10\le x\le10[/math] and [math]-100\le y\le100[/math]. [br]Describe how the two graphs are the same and how they are different.[br]
What degree do these polynomials have? Rewrite each expression in standard form to check.[br]
Let [math]h\left(x\right)=\left(3x-6\right)\left(x+3\right)\left(x-7\right)[/math]. What do you think the graph of [math]y=h\left(x\right)[/math] will look like compared to [math]y=f\left(x\right)[/math]? [br]Use the applet above to check your prediction.[br]
[size=150]Here are the graphs of two polynomial functions, [math]f[/math] and [math]g[/math]. We know that [math]g\left(x\right)=k\cdot f\left(x\right)[/math].[/size][br][img][/img][br]Why do the two graphs have different vertical intercepts but the same horizontal intercepts?
What is the value of [math]k[/math]?[br]