Equation of Perpendicular Bisector

Combining the knowledge and skills of finding midpoints, gradients of perpendicular lines, and equation of straight lines, we can now find the equation of the perpendicular bisector of a line segment AB.[br][br][table][tr][td][b]Step 1:[/b][/td][td]Find the gradient of line [math]AB[/math][/td][/tr][tr][td][b]Step 2:[/b][/td][td]Find the gradient of line [math]\perp AB[/math] using [math]m_1\times m_2=-1[/math][/td][/tr][tr][td][b]Step 3:[/b][/td][td]Find the midpoint of [math]AB[/math].[/td][/tr][tr][td][b]Step 4:[/b][/td][td]With midpt [math]AB[/math] and [math]m_{\perp AB}[/math], find the equation of the line using [math]y-y_1=m\left(x-x_1\right)[/math].[/td][/tr][/table][br][b]Key feature of perpendicular bisector:[/b] Any point along the perpendicular bisector of AB is [b]equidistant[/b] from A and B.[br][br]You may use the applet below to guide your thinking and working process. Afterwhich, you may wish to attempt on your own with a new question.
Close

Information: Equation of Perpendicular Bisector