[size=150]Match each statement in function notation with a description.[br][br][math]P(0)=0[/math][/size]
[size=150][/size][math]P(10)=4[/math]
[size=150][/size][math]P(20)=0[/math]
Use function notation to represent: A student has English at 10:00. [br]
Write a statement to describe the meaning of [math]C(11:15)=\text{chemistry}[/math]
[table][tr][td]Find the value of [math]f\left(20\right)[/math] and of [math]f\left(140\right)[/math].[/td][td][img][/img][/td][/tr][/table]
What does the equation [math]C\left(5\right)=4.50[/math] represent in this situation?
What does the expression [math]C(2)[/math] represent in this situation?
Can we say that the height of the stack is a function of the number of cups in the stack? Explain your reasoning.[br]
Can we say that the number of cups in a stack is a function of the height of the stack? Explain your reasoning.[br]
Identify one point on the graph and explain the meaning of the point in the situation.[br]
[math]\begin{cases} \text-5x+3y=\text-8 \\ \hspace{1.5mm}3x-7y=\text-3 \\ \end{cases}[/math]
[math]\begin{cases} \text-8x-2y=24 \\ \hspace{1.5mm}5x-3y=\hspace{3.5mm}2 \\ \end{cases}[/math]