[table][tr][td]Set 1:[/td][td]Set 2:[/td][/tr][tr][td][math]f(x)=x^2+4x[/math][br][br][math]g(x)=x(x+4)[/math][br][br][math]h(x)=(x+2)^2-4[/math][/td][td][math]p(x)=\text-x^2+6x-5[/math][br][br][math]\\q(x)=(5-x)(x-1)[/math][br][br][math]r(x)=\text-1(x-3)^2+4[/math][/td][/tr][/table]
[size=150]In each set, the expressions that define the output are equivalent. [/size][br][br][table][tr][td]Set 1:[/td][td]Set 2:[/td][/tr][tr][td][math]f(x)=x^2+4x[/math][br][br][math]g(x)=x(x+4)[/math][br][br][math]h(x)=(x+2)^2-4[/math][/td][td][math]p(x)=\text-x^2+6x-5[/math][br][br][math]\\q(x)=(5-x)(x-1)[/math][br][br][math]r(x)=\text-1(x-3)^2+4[/math][br][br][/td][/tr][/table][br][br][size=150]The expression that defines [math]h[/math] is written in [b]vertex form[/b]. We can show that it is equivalent to the expression defining [math]f[/math] by expanding the expression:[/size][br][br][center][math]\displaystyle \begin {align} (x+2)^2-4 &=(x+2)(x+2)-4\\ &=x^2+2x+2x+4-4\\ &=x^2+4x\\ \end{align}[/math][/center][br]Show that the expressions defining [math]r[/math] and [math]p[/math] are equivalent.
[size=150]Here are graphs representing the quadratic functions.[/size][br][br][table][tr][td]Graph of [math]h[/math] [/td][td]Graph of [math]r[/math] [br][/td][/tr][tr][td][img][/img][/td][td][img][/img][br][/td][/tr][/table][br]Why do you think expressions such as those defining [math]h[/math] and [math]r[/math] are said to be written in vertex form?[br]
[size=150]Then, add different numbers to [math]x[/math] before it is squared (for example, [math]y=\left(x+4\right)^2[/math], [math]y=\left(x-3\right)^2[/math]) and observe how the graph changes. [/size][br]Record your observations.[br]
[size=150]Graph [math]y=\left(x-1\right)^2[/math]. Then, experiment with each of the following changes to the function and see how they affect the graph and the vertex:[/size][br][br][list][*]Adding different constant terms to [math]\left(x-1\right)^2[/math] (for example: [math]\left(x-1\right)^2+5[/math], [math]\left(x-1\right)^2-9[/math]).[br][/*][*]Multiplying [math]\left(x-1\right)^2[/math] by different coefficients (for example: [math]y=3\left(x-1\right)^2[/math], [math]y=-2\left(x-1\right)^2[/math]).[/*][/list]
[img][/img][br][br]What is the vertex of this graph?[br]
Find a quadratic equation whose graph has the same vertex and adjust it, if needed, so that it has the graph provided.[br]