Move the Complex numbers [b][color=#0000ff]a[/color][/b], [b][color=#0000ff]b[/color][/b], [b][color=#0000ff]c[/color][/b] and [b][color=#0000ff]d[/color][/b] -[i]Coefficients[/i] to get a new [u][i][b]complex function(Cubic)[/b][/i][/u] and find its [b][color=#ff0000]Roots[/color][/b].[br] Graphical interpretation the [b][color=#93c47d]Roots[/color][/b]: the intersection of implicit functions, which are the [i]zeroed[/i] [u]real [/u]and [u]imaginary[/u] parts of the [b]complex function f(z)[/b], respectively: real(f(z))=0 and imaginary(f(z))=0.