Session 11

Activity 1: Adding and subtracting fractions, v2.
Represent the following operations using the applet. [br][br]Using rectangles of the same size, can you obtain the same length in the second grey rectangle? [br][br]If you can't find the exact result, write down the closest solution.[br][br]1) [math]\text{\frac{1}{2}+\frac{1}{3} =}[/math][br][br]2) [math]\text{\frac{1}{4}+\frac{1}{2} =}[/math][br][br]3) [math]\text{\frac{2}{3}-\frac{2}{6} =}[/math][br][br]4) [math]\text{\frac{5}{9}-\frac{1}{3} =}[/math]
Activity 2: Adding and subtracting fractions on the line, v2.
Represent the following operations using the applet. [br][br]Using the button "Estimación", try to get as close as possible to the result.[br][br]1) [math]\text{\frac{1}{5}+\frac{1}{3} =}[/math] 2) [math]\text{\frac{2}{3}+\frac{1}{4} =}[/math] 3) [math]\text{\frac{5}{7}+\frac{2}{4}=}[/math] [br][br]4) [math]\text{\frac{3}{2}-\frac{2}{3} =}[/math] 5) [math]\text{\frac{1}{2}-\frac{4}{7} =}[/math] 6) [math]\text{\frac{10}{8}-\frac{1}{9} =}[/math]
Adding
Subtracting
Adding and subtracting fractions with different denominators
When we add or subtract fractions,[b] the pieces that we use must have the same size[/b]![br][br]To find pieces of the same size, we can use [b]equivalent fractions. [br][/b]We have to find a [b]common denominator.[br][br][/b][b]Example: [br][br][/b] [math]\text{\frac{3}{9}+\frac{1}{3} = }[/math][br][br]1) Can you find an equivalent fraction to [math]\text{\frac{1}{3}}[/math] with denominator 9?[br][br]2) Solve the operation with the new fraction.[br][br]3) Using one of the applets, represent both operations: do you get the same result?
Finding the common denominator
To find a common denominator, we can compute the [b]least common multiple [/b]of the two denominators, and find equivalent fractions with that denominator.[br][br][b]Example: [br][br][/b][math]\text{\frac{2}{3}+\frac{1}{5} =}[/math][br][br]1) What is the least common multiple of the denominators?[br][br]2) Can you find equivalent fractions with that denominator? [br][br]3) Add the new fractions.[br][br]4) Using one of the applets, represent both operations: do you get the same result?
Activity 3: Solve the following operations
a) [math]\text{\frac{1}{7}+\frac{2}{3} =}[/math]  b) [math]\text{\frac{2}{6}+\frac{1}{4} =}[/math][br][br]c) [math]\text{\frac{3}{5}+\frac{1}{10} =}[/math]  d) [math]\text{\frac{2}{8}-\frac{1}{4} =}[/math][br][br]e) [math]\text{\frac{3}{8}-\frac{1}{4} =}[/math]  f) [math]\text{\frac{3}{2}-\frac{1}{7} =}[/math][br][br]Use the applets to check your results. [br][br][i]Tip: If you don't have enough pieces, draw it in your notebook and your BigBlueButton blackboard.[/i]
Activity 4: Adding mixed numbers
How can we operate these mixed numbers? [br]Make some drawings and discuss it with your group.[br][br]1) [math]\text{1\frac{2}{3}-\frac{1}{3} = }[/math][br][br]2) [math]\text{3\frac{2}{3}+1\frac{3}{6} =}[/math][br][br]3)[math]\text{2\frac{5}{6}-1\frac{1}{6} =}[/math]
Close

Information: Session 11