IM 7.7.2 Practice: Adjacent Angles

Angles [math]A[/math] and [math]C[/math] are supplementary. Find the measure of angle [math]C[/math].[br][br][img][/img]
List two pairs of angles in square [math]CDFG[/math] that are complementary.[br][br][img][/img]
Name three angles that sum to [math]180^\circ[/math].[br][br][img][/img]
Complete the equation with a number that makes the expression on the right side of the equal sign equivalent to the expression on the left side.[br][br][math]5x-2.5+6x-3=[/math]___[math]\left(2x-1\right)[/math]
Match each table with the equation that represents the same proportional relationship.
A: [br][img][/img]
B:[br][img][/img]
C:[br][img][/img]
Close

Information: IM 7.7.2 Practice: Adjacent Angles