[size=150]Identify all values of [math]x[/math] that make the equation true.[/size][br][br][math]\frac{2x+1}{x}=\frac{1}{x-2}[/math]
[math]\frac{1}{x+2}=\frac{2}{x-1}[/math]
[math]\frac{x+3}{1-x}=\frac{x+1}{x+2}[/math]
[math]\frac{x+2}{x+8}=\frac{1}{x+2}[/math]
[size=150]Kiran is solving [math]\frac{2x-3}{x-1}=\frac{2}{x(x-1)}[/math] for [math]x[/math], and he uses these steps:[/size][br][math]\begin{align} \frac{2x-3}{x-1} &= \frac{2}{x(x-1)}\\ (x-1)\left(\frac{2x-3}{x-1} \right) &= x(x-1) \left( \frac{2}{x(x-1)} \right)\\ 2x-3 &= 2\\ 2x &= 5 \\ x &= 2.5 \\ \end{align}[/math][br][br]He checks his answer and finds that it isn't a solution to the original equation, so he writes “no solutions.” Unfortunately, Kiran made a mistake while solving. Find his error and calculate the actual solution(s).
[size=150]Identify all values of [math]x[/math] that make the equation true.[/size][br][br][math]x=\frac{25}{x}[/math]
[math]x+2=\frac{6x-3}{x}[/math]
[math]\frac{x}{x^2}=\frac{3}{x}[/math]
[math]\frac{6x^2+18x}{2x^3}=\frac{5}{x}[/math]
[img][/img][br]Is this the graph of [math]g(x)=\text{-}x^4(x+3)[/math] or [math]h(x)=x^4(x+3)[/math]? Explain how you know.
[size=150]Rewrite the rational function [math]g(x)=\frac{x-9}{x}[/math] in the form [math]g(x)=c+\frac{r}{x}[/math], where [math]c[/math] and [math]r[/math] are constants.[/size]
Elena has a boat that would go 9 miles per hour in still water. She travels downstream for a certain distance and then back upstream to where she started. Elena notices that it takes her 4 hours to travel upstream and 2 hours to travel downstream. The river’s speed is [math]r[/math] miles per hour. Write an expression that will help her solve for [math]r[/math].