So if each square is equivalent to the corresponding rectangle ([math]AC^{^2}\doteq AH\cdot AB[/math] and [math]BC^2\doteq BH\cdot AB[/math])[br]the sum of the squares [math]\left(AC^2+BC^2\right)[/math] is equivalent to the sum of rectangles [math]\left(AH\cdot AB+BH\cdot AB\right)[/math][br][br]As you can see, the two rectangles together make the square on the hypotenuse [math]\left(AB^2\right)[/math].