[left][/left][table][tr][td][math]\frac{2^8}{2^5}[/math][/td][td][math]\left( \frac34 \right)^{\text-5} \cdot \left( \frac34 \right)^{8}[/math][/td][/tr][tr][td][math]\left(4^{\text-5}\right)^{8}[/math][/td][td][math]\frac{10^8}{5^5}[/math][/td][/tr][/table]
Which problems did you want to skip in the previous question? Explain your thinking.
[math]\left(\frac{1}{3}\right)^2\cdot\left(\frac{1}{3}\right)^4=\left(\frac{1}{3}\right)^6[/math]
[math]3^2\cdot5^{^3}=15^5[/math]
[math]5^4\cdot5^5=5^9[/math]
[size=150]What could you change about the false equations above to make them true?[/size]
[math]\left(\frac{1}{2}\right)^4\cdot10^3=5^7[/math]
[math]3^2\cdot5^2=15^2[/math]
Solve this equation: [math]3^{^{x-5}}=9^{^{x+4}}[/math].