Dieses Material veranschaulicht die Wellengleichung [math]s(x,t)=\hat s \cdot \sin\left(\frac{2 \pi}T \cdot t-\frac{2 \pi}\lambda\cdot x\right)[/math] einer nach rechts laufenden Welle.
[list][br][*]Bewege den Schieberegler für die Zeit [math]t[/math] und überzeuge dich, dass mit zunehmendem [math]t[/math] die Welle nach rechts läuft.[br][*]Wie groß ist die Wellenlänge [math]\lambda[/math]?[br][*]Im unteren Schaubild ist das [math]s(t)[/math]-Diagramm für den Schwinger A dargestellt. Verschiebe den Punkt A und überprüfe für verschiedene Zeitpunkte [math]t[/math], ob das [math]s(t)[/math]-Diagramm mit der Auslenkung von A (Punkt P) übereinstimmt.[br][*]Wie groß ist [math]T[/math]?[br][*]Wie groß ist die Ausbreitungsgeschwindigkeit [math]c[/math]?[br][/list]