IM Alg2.2.10 Practice: Multiplicity

Draw a rough sketch of the graph of g(x).
Draw a rough sketch of the graph of f(x).
Predict the end behavior of the polynomial function A(x).
[math]A(x)=(x+3)(x-4)(3x-7)(4x-3)[/math]
Check your prediction.
Predict the end behavior of the polynomial function B(x).
[math]B(x)=(3-x)^2(6-x)[/math]
Check your prediction.
Predict the end behavior of the polynomial function C(x).
[math]C(x)=\text{-}(4-3x)(x^4)[/math]
Check your prediction.
Predict the end behavior of the polynomial function D(x).
[math]D(x)=(6-x)^6[/math]
Check your prediction.
[size=150]Which term can be added to the polynomial expression [math]5x^7-6x^6+4x^4-4x^2[/math] to make it into a 10th degree polynomial?​​[/size]
[size=150][math]f(x)=(x+1)(x-6)[/math] and [math]g(x)=2(x+1)(x-6)[/math]. The graphs of each are shown.[/size][br][img][/img][br][br]Which graph represents which polynomial function? Explain how you know.[br]
State the degree and end behavior of [math]f(x)=8x^3+2x^4-5x^2+9.[/math] Explain or show your reasoning in the app below.
[size=150]The graph of a polynomial function is shown.[/size][br][img][/img][br]Select [b]all[/b] the true statements about the polynomial.
Close

Information: IM Alg2.2.10 Practice: Multiplicity