IM Geo.1.17 Lesson: Working with Rigid Transformations

Segment CD is the perpendicular bisector of segment AB.
[size=150]Find each transformation mentally.[/size][br][img][/img][br]A transformation that takes [math]A[/math] to [math]B[/math].
A transformation that takes [math]B[/math] to [math]A[/math].
A transformation that takes [math]C[/math] to [math]D[/math].
A transformation that takes [math]D[/math] to [math]C[/math].
Sort the cards into categories of your choosing. Be prepared to explain the meaning of your categories.
Then sort the cards into categories in a different way. Be prepared to explain the meaning of your new categories.
For each card with a rigid transformation: write a sequence of rotations, translations, and reflections to get from the original figure to the image. Be precise.
[size=150]Diego observes that although it was often easier to use a sequence of reflections, rotations, and translations to describe the rigid transformations in the cards, each of them could be done with just a single reflection, rotation, or translation. However, Priya draws her own card, shown, which she claims can not be done as a single reflection, rotation, or translation.[/size][br][img][/img][br]For each rigid transformation from the card sort, write the transformation as a single reflection, rotation, or translation.[br]
Justify why Priya’s transformation cannot be written as a single reflection, rotation, or translation.[br]
[size=150]Diego says, “I see why a reflection could take [math]RSTU[/math] to [math]R'S'T'U'[/math], but I’m not sure where the line of reflection is. I’ll just guess.”[/size][br][br]How could Diego see that a reflection could work without knowing where the line of reflection is?[br]
How could Diego find an exact line of reflection that would work?[br]

IM Geo.1.17 Practice: Working with Rigid Transformations

[size=150]Quadrilateral [math]ABCD[/math] is congruent to quadrilateral [math]A'B'C'D'[/math]. Describe a sequence of rigid motions that takes [math]A[/math] to [math]A'[/math], [math]B[/math] to [math]B'[/math], [math]C[/math] to [math]C'[/math], and [math]D[/math] to [math]D'[/math].[/size][br][img][/img]
[size=150]Select [b]all[/b] transformations that must take any point [math]A[/math] to any point [math]B[/math].[/size]
[size=150]Triangle [math]ABC[/math] is congruent to triangle [math]A'B'C'[/math]. Describe a sequence of rigid motions that takes [math]A[/math] to [math]A'[/math], [math]B[/math] to [math]B'[/math], and [math]C[/math] to [math]C'[/math].[/size][br][img][/img]
[size=150]A triangle has rotation symmetry that can take any of its vertices to any of its other vertices. [/size][br][br]Select [b]all[/b] conclusions that we can reach from this.
[size=150][img][/img][br][/size]Select [b]all[/b] the angles of rotation that produce symmetry for this flower.
[size=150]A right triangle has a line of symmetry. [/size][br][br]Select [b]all[/b] conclusions that [i]must[/i] be true.
In quadrilateral BADC, AB=AD and BC=DC.
[size=150]The line [math]AC[/math] is a line of symmetry for this quadrilateral.[/size][br] Based on the line of symmetry, explain why angles [math]ACB[/math] and [math]ACD[/math] have the same measure.
Which of these constructions would construct a line of reflection that takes the point [math]A[/math] to point [math]B[/math]?
[size=150]Here is triangle [math]POG[/math]. [/size][br][img][/img]
Match the description of the rotation with the image of POG under that rotation.

Information