Library of Functions – Visualizing Absolute Values

[b][font=Tahoma, sans-serif][color=#000000](a)Move the constant function with the mouse or using the arrow keys.[br]What is the relation between the [/color][color=#000000][i]y[/i][/color][color=#000000]-coordinateand the [/color][color=#000000][i]x[/i][/color][color=#000000]-coordinateof each intersection point? [/color][/font][/b][br][font=Tahoma, sans-serif][color=#000000]T[/color][color=#000000]he value of g(x) matches the points X coordinate position.[/color][/font][br][b][font=Tahoma, sans-serif][color=#000000](b)Move the absolute value function up and down either using the mouse[br]or the arrow keys. In which way does the function’s equation[br]change? [/color][/font][/b][br][font=Tahoma, sans-serif][color=#000000]I[/color][color=#000000]t adds the value of the Y coordinate (negative or positive) to the[br]function.[/color][/font][br][b][font=Tahoma, sans-serif][color=#000000](c)How could this construction be used in order to familiarize students[br]with the concept of absolute value?[/color][/font][/b][br][font=Tahoma, sans-serif][color=#000000]Showing a visual representation of what an absolute value means.[/color][/font][br]

Information: Library of Functions – Visualizing Absolute Values