[table][tr][td][img][/img][/td][td][img][/img][/td][/tr][tr][td][img][/img][/td][td][img][/img][/td][/tr][/table]
[math]6x^2-7x-5=(2x+1)(3x-5)[/math].
[i]Pause here for a whole-class discussion.[br][br][/i][size=150][math](x-2)[/math] is a factor of [math]2x^3-7x^2+x+10[/math], which means there is some other factor A where [math]2x^3-7x^2+x+10=(x-2)(A)[/math]. [/size]
[math]2x^3+13x^2+16x+5=(2x+1)(x^2+6x+5)[/math]
What is [math](x^4-1)\div(x-1)[/math]?
Use your response to predict what [math](x^7-1)\div(x-1)[/math] is.