Cuadrilátero articulado

El objetivo de una articulación es convertir un movimiento en otro. Tenemos un punto que se desplaza en unas determinadas condiciones y lo queremos transformar en un movimiento distinto de otro punto.[br][br]En este primer caso el punto A es fijo, B puede girar alrededor de A y C alrededor de B. La aplicación determina la posición de D con las longitudes que se han declarado en la ventana izquierda. Podemos modificar la posición de B con el puntero del ratón y C girará alrededor de B al activar la Animación.[br][br]Cuando activas Lugar geométrico, la parte de la circunferencia donde está situado el punto D se resalta con trazo contínuo. De esa forma se informa de las posiciones de D para las que ese cuadrilátero existirá. En la región de la circunferencia de trazo discontinuo no se podrá construir el cuadrilátero articulado con esas longitudes. [br][br]Al activar Animación el punto D deja rastro a su paso (hay un botón para limpiar los rastros) y verás que en algunos momentos ciertas barras desaparecen. Ocurre cuando las condiciones que se plantean (posición de los vértices y longitud de las barras), hacen imposible la construcción.
Usa la aplicación y responde:[br][br]1. Toma cuatro varillas de diferentes longitudes y estudia cuándo se puede construir un cuadrilátero articulado con ellas. Intenta establecer reglas generales que digan qué condiciones deben cumplir las barras.[br][br]2. Comprueba la regla de Grashof (1833). “Si la longitud total de los largueros mayor y menor es menor o igual que la suma de las longitudes de las dos barras restantes, el enlace más corto puede realizar revoluciones".

Information: Cuadrilátero articulado