IM Alg1.6.8 Lesson: Equivalent Quadratic Expressions

[img][/img][br][br]Explain why the diagram shows that [math]6\left(3+4\right)=6\cdot3+6\cdot4[/math].[br]
Draw a diagram to show that 5(x+2)=5x+10.
[size=150]Applying the distributive property to multiply out the factors of, or expand, [math]4\left(x+2\right)[/math] gives us [math]4x+8[/math], so we know the two expressions are equivalent. We can use a rectangle with side lengths [math]\left(x+2\right)[/math] and 4 to illustrate the multiplication.[/size][br][br][img][/img][br]
Draw a diagram to show that n(2n+5) and 2n²+5n are equivalent expressions.
For each expression, use the distributive property to write an equivalent expression. If you get stuck, consider drawing a diagram.[br][br][list][*][math]6\left(\frac{1}{3}n+2\right)[/math][/*][/list]
[list][*][math]p\left(4p+9\right)[/math][/*][/list]
[list][*][math]5r\left(r+\frac{3}{5}\right)[/math][/*][/list]
[list][*][math]\left(0.5w+7\right)w[/math][/*][/list]
Here is a diagram of a rectangle with side lengths x+1 and x+3.
[size=150]Use this diagram to show that [math]\left(x+1\right)\left(x+3\right)[/math] and [math]x^2+4x+3[/math] are equivalent expressions.[/size]
Draw diagrams to help you write an equivalent expression for each of the following: (x+5)²
Draw diagrams to help you write an equivalent expression for each of the following: 2x(x+4)
Draw diagrams to help you write an equivalent expression for each of the following: (2x+1)(x+3)
Draw diagrams to help you write an equivalent expression for each of the following: (x+m)(x+n)
[size=150]Write an equivalent expression for each expression without drawing a diagram:[/size][br][br][math]\left(x+2\right)\left(x+6\right)[/math]
[math]\left(x+5\right)\left(2x+10\right)[/math]
Is it possible to arrange an [math]x[/math] by [math]x[/math] square, five [math]x[/math] by 1 rectangles and six 1 by 1 squares into a single large rectangle? Explain or show your reasoning.[br]
What does this tell you about an equivalent expression for [math]x^2+5x+6[/math]?
Is there a different non-zero number of 1 by 1 squares that we could have used instead that would allow us to arrange the combined figures into a single large rectangle?[br]
Cerrar

Información: IM Alg1.6.8 Lesson: Equivalent Quadratic Expressions