Construct an isosceles triangle whose length of the base and height can be modified by dragging the corresponding vertices. [br][br]Explore the construction below and find out how to construct an isosceles triangle with [url=https://www.geogebra.org/geometry]GeoGebra Geometry[/url]. Then try it yourself by following the instructions below.
[b]Note:[/b] If you're using the Mobile App make sure that the chosen [i]Labeling[/i] option is [i]New Points Only[/i]. You can change this by going to the [i]Settings [/i]in the app's menu and then selecting [i]General.[/i][br][br][table][tr id=checkSegment][td]1.[/td][td][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_segment.png[/icon][/td][td]Select the [i]Segment [/i]tool. Click twice in the [i]Graphics View[/i] to create two points [i]A[/i] and [i]B[/i], and a segment between them.[/td][/tr][tr id=checkMidpoint][td]2.[/td][td][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_midpoint.png[/icon][/td][td]Activate the [i]Midpoint or Center[/i] tool and select the segment [i]AB[/i] to create its midpoint.[/td][/tr][tr id=boolcenter][td]3.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_showhidelabel.png[/icon][/td][td]Click on the midpoint using the [i]Move[/i] tool to rename it to [i]M[/i].[br][b]Note:[/b] In the Mobile App select the [i]More [/i]button to rename the point to [i]M[/i].[/td][/tr][tr id=checkPerpendicularLine][td]4.[/td][td][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_orthogonal.png[/icon][/td][td]Activate the [i]Perpendicular Line[/i] tool. Create a line that is perpendicular to segment [i]AB[/i] and runs through the midpoint [i]M[/i].[br][b]Hint:[/b] Select segment [i]AB[/i] and then point [i]M[/i] to create the perpendicular line.[/td][/tr][tr id=checkPointOnLine2][td]5.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_pointonobject.png[/icon][/td][td]Activate the [i]Point on Object[/i] tool and select the perpendicular line to create a point [i]C[/i] that is restricted to move along the line.[br][/td][/tr][tr id=checkPointOnLine2][td]6.[/td][td][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_move.png[/icon][/td][td][b]Hint:[/b] Use the [i]Move [/i]tool and check if the point cannot be moved away from the perpendicular line.[/td][/tr][/table]
[table][tr][td]7.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_polygon.png[/icon][/td][td]Use the [i]Polygon [/i]tool to create a triangle ABC by selecting the vertices in counter clockwise orientation.[/td][/tr][tr][td]8.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_angle.png[/icon][/td][td]Activate the [i]Angle [/i]tool and select the triangle to display all its interior angles.[/td][/tr][tr][td]9.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_move.png[/icon][/td][td]Select the [i]Move[/i] tool and drag the vertices of the triangle to check if it was constructed correctly.[/td][/tr][tr][td]10.[/td][td][/td][td]Can you find a tool that could be used to replace steps 2 and 4 in this construction? Select the corresponding tool from the [i]Tools View.[/i][/td][/tr][/table]