1. (a) Define polynomial of one variable.[br]Solution:[br]A polynomial in one variable is any expression of the type [br][math] a_nx^n + a_{n-1} x^{n-1} + … + a_2x^2 + a_1x+a_0, [/math][br]where [math] n [/math] is non-negative integer and [math] a_n, a_{n-1} … a_0 [/math] are real numbers, called coefficients. [math] a_nx^n [/math] is called the leading term of the polynomial. [math] 'n' [/math] is degree of the polynomial. [br][br](b) If [math] p(x), q(x), d(x) [/math] and [math] r(x) [/math] represent polynomial, quotient, divisor and remainder respectively. Write the relation among them.[br]Solution:[br]We know, Polynomial = Divisor x Quotient + Remainder[br][math] \therefore p(x) = d(x) \times q(x) + r(x) [/math] [br][br]2. Divide using long division method and find quotient and remainder in each of the following:[br][br](a) [math] x^2 - 10x + 21 \div (x-3) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x- 7 [/math] and remainder [math] (R) = 0 [/math] [br][br](b) [math] x^3 + 2x^2 -5x-6 \div (x+1) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2 + x -6 [/math] and Remainder [math] (R) = 0 [/math][br][br](c) [math] x^3 - 8 \div (x-2) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2 + 2x + 4 [/math] and Remainder [math] R = 0 [/math] [br][br](d) [math] x^3+9x^2+27x+27 \div (x+3) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2+6x+9 [/math] Remainder [math] (R) = 0 [/math][br][br]3. Divide using long division method and find quotient and remainder.[br][br](a) [math] x^3 + 2x^2 -5x -7 \div (x+1) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2 + x - 6 [/math] and Remainder [math] (R) = - 1 [/math] [br][br](b) [math] x^3 - 10x^2 + 16x + 26 \div (x-5) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2 - 5x - 9 [/math] and Remainder [math] R = - 19 [/math] [br][br](c) [math] 2x^4+5x^2-3x-7 \div ( 2x-1 ) [/math] [br]Solution:[br][img][/img][br][math] \therefore [/math] Quotient [math] Q(x) = x^3 +\frac{1}{2} x^2 + \frac{11}{4} - \frac{1}{8} [/math] and Remainder [math] ( R ) = \frac{-57}{8} [/math] [br][br](d) [math] y^5 +y^3 - y \div (3-y) [/math] [br]Solution:[br][img][/img][br][math] \therefore [/math] Quotient [math] Q(y) = -y^4 - 3y^3 - 10y^2 - 30y - 89 [/math] and Remainder [math] ( R ) = 267 [/math][br][br]4. For the function [math] f(y) = y^3 – y^2 – 17y – 15,[/math] use long division to determine whether each of the following is a factor of [math] f(y) [/math] or not.[br][br](a) [math] y + 1 [/math] [br]Solution:[br][img][/img][br]Here, remainder is 0. So [math] y+1 [/math] is a factor of [math] f(y) [/math] [br][br](b) [math] y + 3 [/math] [br]Solution:[br][img][/img][br]Since, remainder is 0, [math] y+3 [/math] is a factor of [math] f(y) [/math] [br](c) [math] y + 5 [/math] [br]Solution:[br][img][/img][br]As remainder [math] = - 80 \neq 0 [/math], [math] y+5 [/math] is not factor of [math] f(y) [/math] [br](d) [math] y - 1 [/math] [br]Solution:[br][img][/img][br]As remainder [math] = -32 \neq 0 [/math], [math] y - 1 [/math] is not a factor of [math] f(y) [/math].[br][br](e) [math] y - 5 [/math] [br]Solution:[br][img][/img][br]As remainder [math] = 0 [/math], [math] y -5 [/math] is a factor of [math] f(y) [/math] [br][br]5. For the polynomial [math] p(x) = x^4 – 6x^3 + x – 2 [/math] and divisor [math] d(x) = x – 1, [/math] use long division to find the quotient [math] Q(x) [/math] and the remainder [math] R(x) [/math] when [math] P(x) [/math] is divided by [math] d(x).[/math] Express [math] p(x) [/math] in the form of [math] d(x). Q(x) + R(x). [/math] Write your finding.[br]Solution:[br]Here,[br] [math] p(x) = x^4 - 6x^3 + x - 2 [/math][br] [math] d(x) = x-1 [/math][br]Now,[br] [img][/img][br]Hence, Quotient [math] Q(x) = x^3 - 5x^2 - 5x -4 [/math][br] Remainder [math] (R) = -6 [/math][br]We know,[br] [math] p(x) = d(x). Q(x) + R(x) [/math][br][math] \therefore x^4 - 6x^3 + x -2 = (x-1)(x^3-5x^2-5x-4) - 6 [/math]