Transforming a picture

Task
Resize an inserted picture to a certain size and apply transformations to the picture in [i]GeoGebra[/i].
Explore the construction...
Instructions
Learn how to recreate the figure above.[br][br][table][tr][td]1.[/td][td][br][br][/td][td]Make sure that you have the [url=http://static.geogebra.org/book/intro-en/worksheets/Sunset_Palmtrees.jpg]picture of the sunset[/url] saved on your computer before you start the actual construction.[/td][/tr][tr][td]2.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_image.png[/icon][/td][td]Insert the picture of the sunset in the left part of the [img]https://wiki.geogebra.org/uploads/thumb/c/c8/Menu_view_graphics.svg/16px-Menu_view_graphics.svg.png[/img] [i]Graphics View [/i]using the [i]Image[/i] tool.[br][b]Note:[/b] The first corner point [i]A[/i] and the second corner point [i]B[/i] of the image are created automatically.[/td][/tr][tr][td]3.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_move.png[/icon][br][/td][td]Move point [i]A[/i] at the lower left corner of the picture and observe, how this affects the picture.[br][/td][/tr][tr][td]4.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_delete.png[/icon][br][/td][td]Delete point [i]B[/i] using the [i]Delete [/i]tool.[/td][/tr][tr][td]5.[/td][td][icon]https://wiki.geogebra.org/uploads/thumb/4/40/Menu_view_algebra.svg/120px-Menu_view_algebra.svg.png[/icon][/td][td]Create a new point [i]B[/i] by entering [code]B = A + (3, 0)[/code] into the[i] Input Bar[/i].[br][b]Hint:[/b] Don't forget to press [i]Enter [/i]after your input.[br][/td][/tr][tr][td]6.[/td][td][icon]https://wiki.geogebra.org/uploads/thumb/3/30/Menu-options.svg/120px-Menu-options.svg.png[/icon][/td][td]Set the new point [i]B[/i] as the SECOND corner point of the picture to change its width to 3 cm.[br][b]Hint:[/b] Open the [i]Settings [/i]of the image and select tab [i]Position[/i].[/td][/tr][tr][td]7.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_join.png[/icon][/td][td]Create a vertical line through two points in the middle of the [img]https://wiki.geogebra.org/uploads/thumb/c/c8/Menu_view_graphics.svg/16px-Menu_view_graphics.svg.png[/img] [i]Graphics View [/i]using the [i]Line [/i]tool.[/td][/tr][tr][td]8.[/td][td][icon]https://www.geogebra.org/images/ggb/toolbar/mode_mirroratline.png[/icon][/td][td]Mirror the picture at the line using the [i]Reflect about Line[/i] tool by selecting the image and then the line.[br][/td][/tr][tr][td]9.[/td][td][icon]https://wiki.geogebra.org/uploads/thumb/3/30/Menu-options.svg/120px-Menu-options.svg.png[/icon][br][/td][td]You might want to reduce the opacity of the image to be able to better distinguish it from the original ([i]Settings [/i]of the image, tab [i]Color[/i]).[/td][/tr][/table]
Try it yourself...
Instructions (continued)
[table][tr][td]10.[/td][td][icon]/images/ggb/toolbar/mode_delete.png[/icon][br][/td][td]Delete point [i]B[/i] to restore the picture’s original size using the [i]Delete [/i]tool.[/td][/tr][tr][td]11.[/td][td][icon]/images/ggb/toolbar/mode_point.png[/icon][br][/td][td]Create a new point [i]B[/i] close to the lower right corner of the original picture.[br][/td][/tr][tr][td]12.[/td][td][icon]https://wiki.geogebra.org/uploads/thumb/3/30/Menu-options.svg/120px-Menu-options.svg.png[/icon][br][/td][td]Set the new point [i]B[/i] as the SECOND corner point of your picture.[br][b]Hint:[/b] Open the [i]Settings [/i]of the image and select tab [i]Position[/i]. [br][b]Note:[/b] You can now resize the image by moving point [i]B[/i].[br][/td][/tr][tr][td]13.[/td][td][icon]/images/ggb/toolbar/mode_point.png[/icon][br][/td][td]Create a new point [i]E[/i] at the top left corner of the original picture.[br][/td][/tr][tr][td]14.[/td][td][icon]https://wiki.geogebra.org/uploads/thumb/3/30/Menu-options.svg/120px-Menu-options.svg.png[/icon][br][/td][td]Set the new point [i]E[/i] as the FOURTH corner point of your picture.[br][b]Hint:[/b] Open the [i][/i][i]Settings[/i][i] [/i]of the image and select tab [i]Position[/i].[/td][/tr][/table][br][b]Note:[/b] You are now able to observe how changes to the original picture affect the reflected picture.

Information: Transforming a picture