[math]\displaystyle \begin{cases} x=5\\ y=x-7 \end{cases}[/math]
[math]\displaystyle \begin{cases} y=4\\ y=x+3 \end{cases}[/math]
[math]\displaystyle \begin{cases} x=8\\ y=\text-11 \end{cases}[/math]
[br][table][tr][td]A [math]\begin{cases} y= 4 \\ x=\text-5y+6 \end{cases}[/math][/td][td]E [math]\begin{cases} y= \text-3x-5 \\ y=4x+30 \end{cases}[/math][/td][td]I [math]\begin{cases} 3x+4y=10 \\ x=2y \end{cases}[/math][/td][/tr][tr][td]B [math]\begin{cases} y= 7 \\ x=3y-4 \end{cases}[/math][/td][td]F [math]\begin{cases} y= 3x-2 \\ y=\text-2x+8 \end{cases}[/math][br][/td][td]J [math]\begin{cases} y= 3x+2 \\ 2x+y = 47 \end{cases}[/math][/td][/tr][tr][td]C [math]\begin{cases} y= \frac{3}{2}x+7 \\ x=\text-4 \end{cases}[/math][/td][td]G [math]\begin{cases} y= 3x \\ x=\text-2y+56 \end{cases}[br][/math][/td][td]K [math]\begin{cases} y= \text-2x+5 \\ 2x+3y = 31 \end{cases}[/math][/td][/tr][tr][td]D [math]\begin{cases} y= \text-3x+10 \\ y=\text-2x+6 \end{cases}[/math][/td][td]H [math]\begin{cases} x=2y-15 \\ y= \text-2x \end{cases}[/math][/td][td]L [math]\begin{cases} x+y=10 \\ x=2y +1 \end{cases}[/math][/td][/tr][/table][br][br]Without solving, identify 3 systems that you think would be the[b] least difficult[/b] to solve. Explain your reasoning.
Without solving, identify 3 systems that you think would be the [b]most difficult[/b] to solve. Explain your reasoning.
1[sup]st [/sup]system with solution: [br][size=85]("least difficult")[/size]
2[sup]nd [/sup]system with solution: [br]
3[sup]rd [/sup]system with solution: [br]
4[sup]th [/sup]system with solution: [br][size=85]("most difficult")[/size][br]
[math]\displaystyle \begin{cases} x + y = 5\\x + y = 7 \end{cases}[/math][br][br]He said, "Just looking at the system, I can see it has no solution. If you add two numbers, that sum can’t be equal to two different numbers.” [br][br]Do you agree with Tyler? Explain your reasoning.
[size=150]In rectangle [math]ABCD[/math], side [math]AB[/math] is 8 centimeters and side [math]BC[/math] is 6 centimeters. [math]F[/math] is a point on [math]BC[/math] and [math]E[/math] is a point on [math]AB[/math]. The area of triangle [math]DFC[/math] is 20 square centimeters, and the area of triangle [math]DEF[/math] is 16 square centimeters. [/size][br][br]What is the area of triangle [math]AED[/math]?