Log graph transformations

Keywords
English Japanese Korean Chinese Simplified
Logarithmic Function 対数関数 로그 함수 对数函数
Sketch スケッチ 스케치 草图
Graph Transformation グラフの変換 그래프 변환 图形变换
x-intercept x軸との交点 x-절편 x轴截距
Domain 定義域 정의역 定义域
Inverse Function 逆関数 역함수 逆函数
Exponential Function 指数関数 지수 함수 指数函数
Asymptotes 漸近線 점근선 渐近线
Range 値域 치역 值域
Base Change 底の変換 기수 변경 底数变换
Vertical Asymptote 垂直漸近線 수직 점근선 垂直渐近线
Different Bases 異なる基底 다른 기수 不同基数
Exponential Equations 指数方程式 지수 방정식 指数方程
Growth and Decay Models 成長と減衰のモデル 성장 및 감소 모델 增长与衰减模型
Transformations 変換 변환 变换
Horizontal Shift 水平シフト 수평 이동 水平移动
Vertical Shift 垂直シフト 수직 이동 垂直移动
Function-inverse Relationship 関数と逆関数の関係 함수-역함수 관계 函数与逆函数的关系
Reflection over the line y=x 直線y=xに関する反射 선 y=x에 대한 반사 关于y=x的反射
Factual Questions 1. What is the definition of a logarithmic function? 2. Sketch the graph of the function . 3. How do you transform the graph of f(x) = log(x) to sketch ? 4. Determine the x-intercept of the logarithmic function . 5. What is the domain of the logarithmic function ? Conceptual Questions 1. Explain why logarithmic functions are the inverse of exponential functions. 2. Discuss the characteristics of logarithmic graphs, including their asymptotes, domain, and range. 3. How do changes in the base of a logarithmic function affect its graph? 4. Explain the significance of the vertical asymptote in the graph of a logarithmic function. 5. Compare the graphs of logarithmic functions with different bases. Debatable Questions 1. Is understanding logarithmic functions as crucial as understanding exponential functions? Why or why not? 2. Debate the practicality of using logarithmic scales in real-world applications. 3. Can the concepts of logarithmic functions enhance one's ability to solve exponential equations? 4. Discuss the statement: "The study of logarithmic functions is essential for a deep understanding of growth and decay models." 5. Evaluate the impact of learning logarithmic functions on students' mathematical reasoning and analytical skills.
Mini-Investigation: Exploring Logarithmic Functions Objectives: - Understand the transformations of logarithmic functions. - Identify the asymptotes of logarithmic functions. - Determine the domain and range of logarithmic functions. - Visualize the relationship between a function and its inverse. Investigation Steps: 1. Introduction to the Logarithmic Function: - Start with the parent function . Use your calculator to plot. Observe its shape and key characteristics. - Identify the vertical asymptote, domain, and range.
2. Horizontal Shift: - Transform to match . - Use the applet to slide the horizontal shift control and observe the changes. - Record observations on the horizontal shift's effect on the graph.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
3. Vertical Shift: - Apply a vertical shift to get - Slide the vertical shift control to see the graph move up by 1 unit. - Discuss the impact on domain and range.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
4. Asymptote Identification: - Identify the new vertical asymptote for the transformed function . - Use the applet to display the equation of the asymptote and confirm if it matches . - Explain the asymptote's significance to the function's domain.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
5. Domain and Range Analysis: - Confirm the domain and range of using the applet. - Reflect on the reasons behind the domain restriction and the range being all real numbers.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
6. Inverse Function Exploration: - Explore the inverse function . - Use the applet to show the inverse function and its reflection over the line . - Sketch or capture both and on the graph with the line .
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
7. Conclusions: - Summarize the effects of horizontal and vertical shifts on the logarithmic function. - Discuss the function-inverse relationship in the context of logarithmic functions. Reflection Questions: 1. How does changing the base of the logarithm affect the graph's shape? 2. What happens to the graph of if you subtract inside the logarithm (e.g., ? 3. How would the domain and range change if the logarithmic function were reflected over the x-axis?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
3 questions selected from Christos logarithm questions. See https://www.christosnikolaidis.com/en/ for more.
Lesson Plan- Unveiling the Dynamics of Logarithmic Graph Transformations
Close

Information: Log graph transformations