[b][size=150][color=#ff0000]Change the angle of rotation of the quadrilaterals by changing the slider setting. Observe the rotation of each quadrilateral and decide if it has rotational symmetry. If so, how many times does the shape match itself when you move the slider from 0 to 360?[/color][/size][/b]
[size=150][b][color=#0000ff]Rotate the quadrilaterals 90[/color][/b][math]^\circ[/math][b][color=#0000ff]. Which quadrilaterals have rotational symmetry at 90[/color][/b][math]^\circ[/math][b][color=#0000ff]?[/color][/b][/size]
[size=200][size=150][b][color=#0000ff]Rotate the quadrilaterals 180[/color][/b][math]^\circ[/math][b][color=#0000ff]. Which quadrilaterals have rotational symmetry at 180[/color][/b][math]^\circ[/math][b][color=#0000ff]?[/color][/b][/size][/size]
[size=200][size=150][b][color=#0000ff]Rotate the quadrilaterals 180[/color][/b][math]^\circ[/math][b][color=#0000ff]. Which quadrilaterals have rotational symmetry at 180[/color][/b][math]^\circ[/math][b][color=#0000ff]?[/color][/b][/size][/size]
[size=150][b][color=#0000ff]Rotate the quadrilaterals 360[/color][/b][math]^\circ[/math][b][color=#0000ff]. Which quadrilaterals have rotational symmetry at 360[/color][/b][math]^\circ[/math][b][color=#0000ff]?[/color][/b][/size]
All the quadrilaterals have rotational symmetry at 360[math]^\circ[/math]. At 360[math]^\circ[/math], the quadrilaterals are in the same position as they were at 0 degrees.
[size=150][b][color=#0000ff]Do you see a pattern?[/color][/b][/size]
The square had the most "matches" in one 360[math]^\circ[/math]turn.
[size=200][b][color=#ff0000]Let's look at the rotations of the square[/color][/b][/size]
[size=150][b][color=#0000ff]How many times did the square "match itself" in one 360 degree turn?[/color][/b][/size]
The square matched itself 4 times in one 360 degree turn. The square has a "match number" of 4.
[size=200][b][color=#ff0000]Rotation of Parallelograms[/color][/b][/size]
[size=150][b][color=#0000ff]What other quadrilaterals had more than one match?[/color][/b][/size]
Parallelograms had more than one match.
[size=150][b][color=#0000ff]How many times does a parallelogram match itself in one 360 degree turn.[/color][/b][/size]
A parallelogram matches itself 2x in one 360 degree turn. Its match number (order of rotation) is 2.
[size=200][b][color=#ff0000]Rotation of non-parallelogram[/color][/b][/size]
[size=150][b][color=#0000ff]A non-parallelogram only matches itself once, at 360 degrees. [/color][/b][/size]