[size=85] Is considered as an [url=https://www.geogebra.org/m/whtwdzab]example[/url] of the distribution of n=72 points on the surface of a sphere. In the applet, you can explore their [color=#ff0000]extreme[/color] distribution. Two known distributions: [br][url=http://dmccooey.com/polyhedra/BiscribedPentakisLsnubDodecahedron.html]Biscribed Pentakis Snub Dodecahedron (laevo)[/url], [br][url=http://dmccooey.com/polyhedra/PentakisLsnubDodecahedron.html]Pentakis Snub Dodecahedron (laevo)[/url]. [br]-[i][color=#ff0000]are not extreme[/color][/i](in terms of the extreme value of the Distance Sum - sum of their mutual distances).[br] [i]Coloring of edges and faces of these polyhedra in applets[/i]:[br][url=https://www.geogebra.org/m/enwazutx]Extreme distribution[/url] [br][url=https://www.geogebra.org/m/n246afwd]Biscribed Pentakis Snub Dodecahedron (laevo)[/url][br][url=https://www.geogebra.org/m/wyzgdsfq]Pentakis Snub Dodecahedron (laevo)[/url] .[/size]
[url=http://dmccooey.com/polyhedra/BiscribedPentakisLsnubDodecahedron.html]Biscribed Pentakis Snub Dodecahedron (laevo)[/url][br] [url=http://dmccooey.com/polyhedra/PentakisLsnubDodecahedron.html]Pentakis Snub Dodecahedron (laevo)[/url]