[size=150] Select [b]all[/b] the expressions that are equivalent to [math](3-5i)(\text{-}8+2i)[/math][/size]
[size=150]Explain or show how to write [math](20-i)(8+4i)[/math] in the form [math]a+bi[/math], where [math]a[/math] and [math]b[/math] are real numbers.[/size]
[math](\text{-}9+2i)(10-13i)=\text{-}68-97i[/math]
[math](\hspace{1cm} - 2i)(\hspace{1cm} + 2i) = \hspace{1cm} - 10i[/math][br]What could go in the blanks?[br]
Could other numbers work, or is this the only possibility? Explain your reasoning.[br]
[math]x^2=\text{-}49[/math]
[math]x^3=\text{-}49[/math]
Optionally, plot [math]3+2i[/math] in the complex plane. Then plot and label each of your answers.[br][list][*][math]2(3+2i)[/math][/*][*][math]i(3+2i)[/math][/*][*][math]\text{-}i(3+2i)[/math][/*][*][math](3-2i)(3+2i)[/math][/*][/list]
[img][/img][br]Describe a pattern in how each account balance changed from one year to the next.[br]
Define the amount of money, in thousands of dollars, in accounts [math]A[/math] and [math]B[/math] as functions of time [math]t[/math], where [math]t[/math] is years since 2000, using function notation.[br]
Will account [math]A[/math] ever have the same balance as account [math]B[/math]? If so, when? Explain how you know.[br]