[size=150][b]Use the applet below to explore how changing the central angle affects the sector area and arc length of a circle.[/b][/size][br][size=85]以下のアプレットを使用して、中心角の変更が円の扇形領域と円弧の長さにどのような影響を与えるかを調べてください。[/size][br][br][b][size=150]Observe and record how changing the central angle affects the size of the sector and the length of the arc[/size][/b].[br][size=85]中心角の変化が扇形のサイズと円弧の長さにどのような影響を与えるかを観察して記録します。[/size][br][br][size=150][b]a.45[/b][math]^\circ[/math][b], 90[/b][math]^\circ[/math][b], and 180[/b][math]^\circ[/math][b][br]b. 30[/b][math]^\circ[/math][b], and 90[/b][math]^\circ[/math][b][br][/b][/size][br][size=100][b][color=#0000ff]Note: You have 5 minutes to complete the following questions below.[/color][/b][/size][br][size=85]5 分以内に以下の質問に答えてください。[/size]
[b][size=150]What happens when you double the central angle?[br][/size][/b][size=85]中心角を2倍にするとどうなるでしょうか?[/size]
[size=150][b]Two sectors are created from the same circle. [br]The central angle of the first sector is 30°, and the central angle of the second sector is 90°. [br][br]Which of the following best describes the relationship between the central angle, arc length, and sector area in a circle?[/b][/size][color=rgba(0, 0, 0, 0.87)][br][/color][size=85]円の中心角、円弧長、扇形面積の関係を最もよく説明しているのは次のうちどれですか?[/size]
[size=150][b]Doubling the central angle doubles the arc length and the sector area.[/b][/size][br]中心角を 2 倍にすると、円弧の長さと扇形の面積も 2 倍になります。
[size=150][b]The arc length and the area of sectors made from the same circle are [color=#ff0000]not proportional[/color] to the measure of the central angles.[/b][/size][br][size=85]同じ円から作られる弧の長さと扇形の面積は、中心角の大きさに比例しません。[/size]
[img]https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTn1YON6eloOxeYQzikjnIk6p4i8xXnQRnUcQ&s[/img]
[b]Given a sector with a radius r= 3m, and a 90°central angle, what is the arc length and sector area?[/b]
[b]Given a sector with a radius r= 3m, and a 120°central angle, what is the arc length and sector area?[/b]
[img][/img]
[img]https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTn1YON6eloOxeYQzikjnIk6p4i8xXnQRnUcQ&s[/img]
[size=150][b]Find the sector area.[br][/b][br]Given:[br]r= 6 cm[br]l= 4 π cm[/size]
[size=150][b]Find the sector area.[br][/b][br]Given:[br]r= 9 cm[br]l= 14 π cm[/size]
[img]https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTn1YON6eloOxeYQzikjnIk6p4i8xXnQRnUcQ&s[/img]
[size=150][b]Find the central angle of a sector with a radius of 12 cm and an arc length of 10π cm.[/b][/size]