Find the area between the functions [math]f\left(x\right)=-x^2+2\cdot x+8[/math] and [math]g\left(x\right)=-x-2[/math] using of dynamic geometry software.
[list=1][*]Open GeoGebra program.[/*][*]Open Algebra Window in View Menu.[/*][*]Click "Show Grid" in Graph Window.[/*][*] Write [math]f\left(x\right)=-x^2+2\cdot x+8[/math] and press Enter. (Thus the graph of function f(x) is drawn.)[/*][*]Draw a graph the funciton [math]g\left(x\right)=-x-2[/math] similar way (Thus in the same coordinate system graphs of the functions f(x) and g(x))[/*][*]Click the button Intercept and then click f and g (Thus the interceptpoint of f and g is determined [color=#ff0000](A(-2,0),B(5,-7))[/color][/*][*]Write input '[color=#ff0000]'İntegral[abs(f(x)-g(x)),-2,5]'' [/color].(Thus the area is computed.)[/*][/list]
Find the area using GeoGebra between the curve [math]y=x^3[/math] and the straight line y=x. [br]
Find the area of section, which is between the curves [math]y=e^x[/math] and [math]y=e^{2-x}[/math] , and the straight lines [math]x=0[/math] and [math]x=2[/math] with using GeoGebra.