https://www.geogebra.org/m/FQXxW67R
Net of a Rectangular Prism
Cube Nets
Patterns of a cube
NCTM - Cube Nets
https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Cube-Nets/
Alphabets on Cube Faces - modified from Móricz Márk 's construction
心靈影像 visualization
January 2019
Opposite & Adjacent Faces
Are there any alternate approaches?
NRICH activity
https://nrich.maths.org/1140
參考資料(Reference) 1:百變正方體
https://mathseed.ntue.edu.tw/resoures/96/9703-9705-11.pdf
參考資料(Reference) 2:正方體的展開圖、截面與學生的空間感培養
https://www.eduhk.hk/primaryed/eproceedings/fullpaper/RN258.pdf
后記(Epilogue):
[list=1][*]這是2018-19年度學習圈與順德聯誼總會梁潔華小學一群數學科同事協作的課研記錄(參考編號為nozbDKLVNhk)。[br][/*][*]SeeSaw是本次延續學習選用的自學平台。[/*][*]動手實物操作與虛擬電子科技各有其強弱之處。[/*][*]建構心靈動態影像/空間感要留意成員數學概念的建立。[br][/*][*]第一個GeoGebra小程序(參考編號為ejapdmq7)可作繪圖之用, r 是棱長。[br][/*][*]挑戰題工作紙仍有待修改。[/*][/list]
cube faces distinctes
forum : [br]http://www.geogebra.org/forum/viewtopic.php?f=62&t=44003&sid=ec218ca6f54de2e3b67d2e4c2b287a1b
Cube Geometry: Shortest Path Between Points - Adjacent Faces
The applet below illustrates the shortest path between points on two adjacent faces of a cube. [br][br]Drag the magenta-colored points. Rotate the view to convince yourself that the path is indeed the shortest.
Cube Geometry: Shortest Path Between Points - Adjacent Faces
Building with Snap Cubes
Use the 32 snap cubes in the applet’s hidden stack to build the largest single cube you can. Each small cube has side length of 1 unit.[br][br]In addition try to answer the questions below the applet.
How many snap cubes did you use?
What is the side length of the cube you built?[br]
What is the area of each face of the built cube? Show your reasoning.[br]
What is the volume of the built cube? Show your reasoning.[br]
Folding paper to make a box
Cut corners from the paper to fold into a box.[br]What size of corner cut out generates a box with the largest volume?
Folding paper to make a box
.
A Cube Removed From A Cube
A unit cube -[br][br][Volume; V[sub]0[/sub]=1 u[sup]3[/sup], Surface; S[sub]0[/sub]=6 u[sup]2[/sup], Edge length; E[sub]0[/sub]=12 u][br][br]- has a cube of side length L removed from one of its vertices (see left panel).[br][br]Drag the YELLOW dot to vary the size of the cut out cube.[br][br]The right panel shows the volume V/V[sub]0[/sub], the surface area S/S[sub]0[/sub] and the total edge length E/E[sub]0[/sub] of the remaining shape.[br][br]How do V/V[sub]0[/sub], S/S[sub]0[/sub] and E/E[sub]0[/sub] vary as functions of L ?